Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mobility and traffic research  (1)
Type of Medium
Publisher
Person/Organisation
Language
Years
FID
  • Mobility and traffic research  (1)
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2023
    In:  Transportation Research Record: Journal of the Transportation Research Board
    In: Transportation Research Record: Journal of the Transportation Research Board, SAGE Publications
    Abstract: Object recognition and depth perception are two tightly coupled tasks that are indispensable for situational awareness. Most autonomous systems are able to perform these tasks by processing and integrating data streaming from a variety of sensors. The multiple hardware and sophisticated software architectures required to operate these systems makes them expensive to scale and operate. This paper implements a fast, monocular vision system that can be used for simultaneous object recognition and depth perception. We borrow from the architecture of a start-of-the-art object recognition system, YOLOv3, and extend its architecture by incorporating distances and modifying its loss functions and prediction vectors to enable it to multitask on both tasks. The vision system is trained on a large database acquired through the coupling of LiDAR measurements with complementary 360-degree camera to generate a high-fidelity labeled dataset. The performance of the multipurpose network is evaluated on a test dataset consisting of a total of 7,634 objects collected on a different road network. When compared with ground truth LiDAR data, the proposed network achieves a mean absolute percentage error rate of 11% on the passenger car within 10 m and a mean error rate of 7% or 9% on the truck within 10 m and beyond 10 m, respectively. It was also observed that adding a second task (depth perception) to the modeling network improved the accuracy of object detection by about 3%. The proposed multipurpose model can be used for the development of automated alert systems, traffic monitoring, and safety monitoring.
    Type of Medium: Online Resource
    ISSN: 0361-1981 , 2169-4052
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2023
    detail.hit.zdb_id: 2403378-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages