Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2013
    In:  Antimicrobial Agents and Chemotherapy Vol. 57, No. 11 ( 2013-11), p. 5432-5437
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 57, No. 11 ( 2013-11), p. 5432-5437
    Abstract: Gram-positive bacteria cause serious human illnesses through combinations of cell surface and secreted virulence factors. We initiated studies with four of these organisms to develop novel topical antibacterial agents that interfere with growth and exotoxin production, focusing on menaquinone analogs. Menadione, 1,4-naphthoquinone, and coenzymes Q1 to Q3 but not menaquinone, phylloquinone, or coenzyme Q10 inhibited the growth and to a greater extent exotoxin production of Staphylococcus aureus , Bacillus anthracis , Streptococcus pyogenes , and Streptococcus agalactiae at concentrations of 10 to 200 μg/ml. Coenzyme Q1 reduced the ability of S. aureus to cause toxic shock syndrome in a rabbit model, inhibited the growth of four Gram-negative bacteria, and synergized with another antimicrobial agent, glycerol monolaurate, to inhibit S. aureus growth. The staphylococcal two-component system SrrA/B was shown to be an antibacterial target of coenzyme Q1. We hypothesize that menaquinone analogs both induce toxic reactive oxygen species and affect bacterial plasma membranes and biosynthetic machinery to interfere with two-component systems, respiration, and macromolecular synthesis. These compounds represent a novel class of potential topical therapeutic agents.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2013
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Antimicrobial Agents and Chemotherapy, American Society for Microbiology, Vol. 58, No. 1 ( 2014-01), p. 432-439
    Abstract: Since conventional 14-day primaquine (PMQ) radical cure of vivax malaria is associated with poor compliance, and as total dose, not therapy duration, determines efficacy, a preliminary pharmacokinetic study of two doses (0.5 and 1.0 mg/kg of body weight) was conducted in 28 healthy glucose-6-phosphate dehydrogenase-normal Papua New Guinean children, aged 5 to 12 years, to facilitate development of abbreviated high-dose regimens. Dosing was with food and was directly observed, and venous blood samples were drawn during a 168-h postdose period. Detailed safety monitoring was performed for hepatorenal function and hemoglobin and methemoglobin concentrations. Plasma concentrations of PMQ and its metabolite carboxyprimaquine (CPMQ) were determined by liquid chromatography-mass spectrometry and analyzed using population pharmacokinetic methods. The derived models were used in simulations. Both single-dose regimens were well tolerated with no changes in safety parameters. The mean PMQ central volume of distribution and clearance relative to bioavailability (200 liters/70 kg and 24.6 liters/h/70 kg) were within published ranges for adults. The median predicted maximal concentrations ( C max ) for both PMQ and CPMQ after the last dose of a 1.0 mg/kg 7-day PMQ regimen were approximately double those at the end of 14 days of 0.5 mg/kg daily, while a regimen of 1.0 mg/kg twice daily resulted in a 2.38 and 3.33 times higher C max for PMQ and CPMQ, respectively. All predicted median C max concentrations were within ranges for adult high-dose studies that also showed acceptable safety and tolerability. The present pharmacokinetic data, the first for PMQ in children, show that further studies of abbreviated high-dose regimens are feasible in this age group.
    Type of Medium: Online Resource
    ISSN: 0066-4804 , 1098-6596
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2014
    detail.hit.zdb_id: 1496156-8
    SSG: 12
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages