Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Environmental Toxicology and Chemistry, Wiley, Vol. 36, No. 8 ( 2017-08), p. 2178-2189
    Abstract: Leaf litter is a major source of carbon and energy for stream food webs, while both leaf‐decomposing microorganisms and macroinvertebrate leaf shredders can be affected by fungicides. Despite the potential for season‐long fungicide exposure for these organisms, however, such chronic exposures have not yet been considered. Using an artificial stream facility, effects of a chronic (lasting up to 8 wk) exposure to a mixture of 5 fungicides (sum concentration 20 μg/L) on leaf‐associated microorganisms and the key leaf shredder Gammarus fossarum were therefore assessed. While bacterial density and microorganism‐mediated leaf decomposition remained unaltered, fungicide exposure reduced fungal biomass (≤71%) on leaves from day 28 onward. Gammarids responded to the combined stress from consumption of fungicide‐affected leaves and waterborne exposure with a reduced abundance (≤18%), which triggered reductions in final population biomass (18%) and in the number of precopula pairs (≤22%) but could not fully explain the decreased leaf consumption (19%), lipid content (≤43%; going along with an altered composition of fatty acids), and juvenile production (35%). In contrast, fine particulate organic matter production and stream respiration were unaffected. Our results imply that long‐term exposure of leaf‐associated fungi and shredders toward fungicides may result in detrimental implications in stream food webs and impairments of detrital material fluxes. These findings render it important to understand decomposer communities’ long‐term adaptational capabilities to ensure that functional integrity is safeguarded. Environ Toxicol Chem 2017;36:2178–2189. © 2017 SETAC
    Type of Medium: Online Resource
    ISSN: 0730-7268 , 1552-8618
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2027441-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Change Biology, Wiley, Vol. 24, No. 2 ( 2018-02)
    Abstract: Ecosystem functions in streams (e.g., microbially mediated leaf litter breakdown) are threatened globally by the predicted agricultural intensification and its expansion into pristine areas, which is associated with increasing use of fertilizers and pesticides. However, the ecological consequences may depend on the disturbance history of microbial communities. To test this, we assessed the effects of fungicides and nutrients (four levels each) on the structural and functional resilience of leaf‐associated microbial communities with differing disturbance histories (pristine vs. previously disturbed) in a 2 × 4 × 4‐factorial design ( n  =   6) over 21 days. Microbial leaf breakdown was assessed as a functional variable, whereas structural changes were characterized by the fungal community composition, species richness, biomass, and other factors. Leaf breakdown by the pristine microbial community was reduced by up to 30% upon fungicide exposure compared with controls, whereas the previously disturbed microbial community increased leaf breakdown by up to 85%. This significant difference in the functional response increased in magnitude with increasing nutrient concentrations. A pollution‐induced community tolerance in the previously disturbed microbial community, which was dominated by a few species with high breakdown efficacies, may explain the maintained function under stress. Hence, the global pressure on pristine ecosystems by agricultural expansion is expected to cause a modification in the structure and function of heterotrophic microbial communities, with microbially mediated leaf litter breakdown likely becoming more stable over time as a consequence of fungal community adaptions.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Ecology and Evolution, Wiley, Vol. 11, No. 9 ( 2021-05), p. 4353-4365
    Abstract: Biodiversity is under pressure worldwide, with amphibians being particularly threatened. Stressors related to human activity, such as chemicals, are contributing to this decline. It remains, however, unclear whether chemicals exhibiting a fungicidal activity could indirectly affect tadpoles that depend on microbially conditioned leaf litter as food source. The indirect effect of fungicides (sum concentration of a fungicide mixture composed of azoxystrobin, carbendazim, cyprodinil, quinoxyfen, and tebuconazole: 100 µg/L) on tadpoles was assessed relative to leaf litter colonized by microbes in absence of fungicides (control) and a worst‐case scenario, that is leached leaf litter without microbial colonization. The quality of leaf litter as food for tadpoles of the European common frog ( Rana temporaria ) was characterized through neutral lipid fatty acid profiles and microbial sum parameters and verified by sublethal responses in tadpoles (i.e., feeding rate, feces production, growth, and fatty acid composition). Fungicides changed the nutritious quality of leaf litter likely through alterations in leaves’ neutral lipid fatty acid profiles (i.e., changes in some physiologically important highly unsaturated fatty acids reached more than 200%) in combination with a potential adsorption onto leaves during conditioning. These changes were reflected by differences in the development of tadpoles ultimately resulting in an earlier start of metamorphosis. Our data provide a first indication that fungicides potentially affect tadpole development indirectly through bottom‐up effects. This pathway is so far not addressed in fungicide environmental risk assessment and merits further attention.
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2635675-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Ecology, Wiley, Vol. 102, No. 10 ( 2021-10)
    Abstract: Fungi produce a variety of extracellular enzymes, making recalcitrant substrates bioavailable. Thus, fungi are central for the decomposition of dead organic matter such as leaf litter. Despite their ecological importance, our understanding of relationships between fungal species diversity and ecosystem functioning is limited, especially with regard to aquatic habitats. Moreover, fungal interactions with other groups of microorganisms such as bacteria are rarely investigated. This lack of information may be attributed to methodological limitations in tracking the biomass of individual fungal species in communities, impeding a detailed assessment of deviations from the overall performance expected from the sum of individual species’ performances, so‐called net diversity effects (NDEs). We used fungal species‐specific biomolecular tools to target fungal–fungal and fungal–bacterial interactions on submerged leaves using four cosmopolitan aquatic fungal species and a stream microbial community dominated by bacteria. In microcosms, we experimentally manipulated fungal diversity and bacterial absence/presence and assessed functional performances and fungal community composition after 14 d of incubation. Fungal community data were used to evaluate NDEs on leaf colonization. The individual fungal species were functionally distinct and fungal cultures were on average more efficient than the bacterial culture. In absence of bacteria, NDEs correlated with growth rate (negatively) and genetic divergence (positively), but were predominantly negative, suggesting that higher fungal diversity led to a lower colonization success (niche overlap). In both absence and presence of bacteria, the overall functional performances of the communities were largely defined by their composition (i.e., no interactions at the functional level). In the presence of bacteria, NDEs correlated with genetic divergence (positively) and were largely positive, suggesting higher fungal diversity stimulated colonization (niche complementarity). This stimulation may be driven by a bacteria‐induced inhibition of fungal growth, alleviating competition among fungi. Resulting feedback loops eventually promote fungal coexistence and synergistic interactions. Nonetheless, overall functional performances are reduced compared to bacteria‐free cultures. These findings highlight the necessity to conduct future studies, investigating biodiversity–ecosystem functioning relationships using artificial systems, without exclusion of key organisms naturally co‐occurring in the compartment of interest. Otherwise, study outcomes might not reflect true ecological relationships and ultimately misguide conservation strategies.
    Type of Medium: Online Resource
    ISSN: 0012-9658 , 1939-9170
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1797-8
    detail.hit.zdb_id: 2010140-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Limnology and Oceanography, Wiley, Vol. 67, No. 1 ( 2022-01), p. 39-52
    Abstract: Microbial organic matter decomposition is a critical ecosystem function, which can be negatively affected by chemicals. Although the majority of organic matter is stored in sediments, the impact of chemicals has exclusively been studied in benthic systems. To address this knowledge gap, we assessed the impact of a fungicide mixture at three concentrations on the decomposition of black alder leaves in the benthic and hyporheic zone. We targeted two sediment treatments characterized by fine and coarse grain sizes (1–2 vs. 2–4 mm). Besides microbial communities' functioning (i.e., decomposition), we determined their structure through microbial biomass estimates and community composition. In absence of fungicides, leaf decomposition, microbial biomass estimates and fungal sporulation were lower in the hyporheic zone, while the importance of bacteria was elevated. Leaf decomposition was reduced (40%) under fungicide exposure in fine sediment with an effect size more than twice as high as in the benthic zone (15%). These differences are likely triggered by the lower hydraulic conductivity in the hyporheic zone influencing microbial dispersal as well as oxygen and nutrient fluxes. Since insights from the benthic zone are not easily transferable, these results indicate that the hyporheic zone requires a higher recognition with regard to ecotoxicological effects on organic matter decomposition.
    Type of Medium: Online Resource
    ISSN: 0024-3590 , 1939-5590
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages