Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (3)
  • Sharma, Cynthia M.  (3)
Type of Medium
Publisher
  • Proceedings of the National Academy of Sciences  (3)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 5 ( 2011-02), p. 2124-2129
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 5 ( 2011-02), p. 2124-2129
    Abstract: There has been an increasing interest in cyanobacteria because these photosynthetic organisms convert solar energy into biomass and because of their potential for the production of biofuels. However, the exploitation of cyanobacteria for bioengineering requires knowledge of their transcriptional organization. Using differential RNA sequencing, we have established a genome-wide map of 3,527 transcriptional start sites (TSS) of the model organism Synechocystis sp. PCC6803. One-third of all TSS were located upstream of an annotated gene; another third were on the reverse complementary strand of 866 genes, suggesting massive antisense transcription. Orphan TSS located in intergenic regions led us to predict 314 noncoding RNAs (ncRNAs). Complementary microarray-based RNA profiling verified a high number of noncoding transcripts and identified strong ncRNA regulations. Thus, ∼64% of all TSS give rise to antisense or ncRNAs in a genome that is to 87% protein coding. Our data enhance the information on promoters by a factor of 40, suggest the existence of additional small peptide-encoding mRNAs, and provide corrected 5′ annotations for many genes of this cyanobacterium. The global TSS map will facilitate the use of Synechocystis sp. PCC6803 as a model organism for further research on photosynthesis and energy research.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 51 ( 2009-12-22), p. 21878-21882
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 51 ( 2009-12-22), p. 21878-21882
    Abstract: Methanosarcina mazei and related mesophilic archaea are the only organisms fermenting acetate, methylamines, and methanol to methane and carbon dioxide, contributing significantly to greenhouse gas production. The biochemistry of these metabolic processes is well studied, and genome sequences are available, yet little is known about the overall transcriptional organization and the noncoding regions representing 25% of the 4.01-Mb genome of M. mazei . We present a genome-wide analysis of transcription start sites (TSS) in M. mazei grown under different nitrogen availabilities. Pyrosequencing-based differential analysis of primary vs. processed 5′ ends of transcripts discovered 876 TSS across the M. mazei genome. Unlike in other archaea, in which leaderless mRNAs are prevalent, the majority of the detected mRNAs in M. mazei carry long untranslated 5′ regions. Our experimental data predict a total of 208 small RNA (sRNA) candidates, mostly from intergenic regions but also antisense to 5′ and 3′ regions of mRNAs. In addition, 40 new small mRNAs with ORFs of ≤30 aa were identified, some of which might have dual functions as mRNA and regulatory sRNA. We confirmed differential expression of several sRNA genes in response to nitrogen availability. Inspection of their promoter regions revealed a unique conserved sequence motif associated with nitrogen-responsive regulation, which might serve as a regulator binding site upstream of the common IIB recognition element. Strikingly, several sRNAs antisense to mRNAs encoding transposases indicate nitrogen-dependent transposition events. This global TSS map in archaea will facilitate a better understanding of transcriptional and posttranscriptional control in the third domain of life.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 47 ( 2010-11-23), p. 20435-20440
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 47 ( 2010-11-23), p. 20435-20440
    Abstract: The abundant class of bacterial Hfq-associated small regulatory RNAs (sRNAs) parallels animal microRNAs in their ability to control multiple genes at the posttranscriptional level by short and imperfect base pairing. In contrast to the universal length and seed pairing mechanism of microRNAs, the sRNAs are heterogeneous in size and structure, and how they regulate multiple targets is not well understood. This paper provides evidence that a 5′ located sRNA domain is a critical element for the control of a large posttranscriptional regulon. We show that the conserved 5′ end of RybB sRNA recognizes multiple mRNAs of Salmonella outer membrane proteins by ≥7-bp Watson–Crick pairing. When fused to an unrelated sRNA, the 5′ domain is sufficient to guide target mRNA degradation and maintain σ E -dependent envelope homeostasis. RybB sites in mRNAs are often conserved and flanked by 3′ adenosine. They are found in a wide sequence window ranging from the upstream untranslated region to the deep coding sequence, indicating that some targets might be repressed at the level of translation, whereas others are repressed primarily by mRNA destabilization. Autonomous 5′ domains seem more common in sRNAs than appreciated and might improve the design of synthetic RNA regulators.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages