Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cold Spring Harbor Laboratory  (2)
  • Barquist, Lars  (2)
Type of Medium
Publisher
  • Cold Spring Harbor Laboratory  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Cold Spring Harbor Laboratory ; 2023
    In:  RNA Vol. 29, No. 5 ( 2023-05), p. 570-583
    In: RNA, Cold Spring Harbor Laboratory, Vol. 29, No. 5 ( 2023-05), p. 570-583
    Abstract: Antisense oligomers (ASOs), such as peptide nucleic acids (PNAs), designed to inhibit the translation of essential bacterial genes, have emerged as attractive sequence- and species-specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side effects caused by their binding to transcripts other than the intended target. To facilitate the design of PNAs with minimal off-target effects, we developed MASON ( m ake a nti s ense o ligomers n ow), a web server for the design of PNAs that target bacterial mRNAs. MASON generates PNA sequences complementary to the translational start site of a bacterial gene of interest and reports critical sequence attributes and potential off-target sites. We based MASON's off-target predictions on experiments in which we treated Salmonella enterica serovar Typhimurium with a series of 10-mer PNAs derived from a PNA targeting the essential gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA-seq) data revealed that PNAs with terminal mismatches are still able to target acpP , suggesting wider off-target effects than anticipated. Comparison of these results to an RNA-seq data set from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs confirmed that our findings are not unique to Salmonella . We believe that MASON's off-target assessment will improve the design of specific PNAs and other ASOs.
    Type of Medium: Online Resource
    ISSN: 1355-8382 , 1469-9001
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2023
    detail.hit.zdb_id: 1475737-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: RNA, Cold Spring Harbor Laboratory, Vol. 26, No. 10 ( 2020-10), p. 1448-1463
    Abstract: RNA-binding proteins (RBPs) play important roles in bacterial gene expression and physiology but their true number and functional scope remain little understood even in model microbes. To advance global RBP discovery in bacteria, we here establish glycerol gradient sedimentation with RNase treatment and mass spectrometry (GradR). Applied to Salmonella enterica , GradR confirms many known RBPs such as CsrA, Hfq, and ProQ by their RNase-sensitive sedimentation profiles, and discovers the FopA protein as a new member of the emerging family of FinO/ProQ-like RBPs. FopA, encoded on resistance plasmid pCol1B9, primarily targets a small RNA associated with plasmid replication. The target suite of FopA dramatically differs from the related global RBP ProQ, revealing context-dependent selective RNA recognition by FinO-domain RBPs. Numerous other unexpected RNase-induced changes in gradient profiles suggest that cellular RNA helps to organize macromolecular complexes in bacteria. By enabling poly(A)-independent generic RBP discovery, GradR provides an important element in the quest to build a comprehensive catalog of microbial RBPs.
    Type of Medium: Online Resource
    ISSN: 1355-8382 , 1469-9001
    Language: English
    Publisher: Cold Spring Harbor Laboratory
    Publication Date: 2020
    detail.hit.zdb_id: 1475737-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages