feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Berlin  (2)
  • HU Berlin  (2)
  • Zuse-Institut Berlin
  • Landesgeschichtliche Vereinigung
  • BLDAM-Archäologie
  • BHT
  • Informationszentrum DGAP
  • Bibliothek Wusterhausen (Dosse)
  • GB Großbeeren
  • 2020-2024  (2)
  • Voigt, Sebastian
Type of Medium
Language
Region
  • Berlin  (2)
Library
Years
Year
Access
  • 1
    UID:
    edochu_18452_24191
    Format: 1 Online-Ressource (31 Seiten)
    Content: The origin of Reptilia and the biostratigraphic and palaeobiogeographic distribution of its early representatives are still poorly understood. An independent source of information may come from the extensive Carboniferous footprint record of reptiles, which is arguably richer and more complete than the skeletal record. Nevertheless, previous studies often failed to provide useful information because they were based on poorly preserved material and/or characters non-exclusive of reptile tracks. In fact, a large part of the supposed early reptile tracks can be assigned to the anamniote ichnotaxon Hylopus hardingi. Here, we revise the ichnotaxon Hylopus hardingi based on anatomy-consistent material, attribute it to anamniote reptiliomorphs, and distinguish it from Notalacerta missouriensis, the earliest ichnotaxon that can be attributed to reptiles, and the somewhat younger Varanopus microdactylus (attributed to parareptiles, such as bolosaurians) and Dromopus lacertoides (attributed to araeoscelid reptiles and non-varanodontine varanopids). These attributions are based on correlating morphofunctional features of tracks and skeletons. Multivariate analysis of trackway parameters indicates that the late Bashkirian Notalacerta missouriensis and Hylopus hardingi differ markedly in their trackway patterns from Late Mississippian Hylopus hardingi and Late Pennsylvanian reptile tracks, which appear to share a derived amniote-like type of gait. While the first occurrence/appearance of reptile tracks in the tetrapod footprint record during the late Bashkirian corresponds to the first occurrence/appearance of reptiles in the skeletal record, footprints significantly enlarge the paleobiogeographic distribution of the group, suggesting an earlier radiation of reptiles during the Bashkirian throughout North America and possibly North Africa. Dromopus appeared in the Kasimovian together with the diapsid group Araeoscelidia, but footprints from Western-European occurrences enlarge the paleobiogeographic distribution of diapsids and varanopids. Varanopus and bolosaurian parareptiles appear in the Gzhelian of North America. Older parareptiles are, however, known from the late Moscovian. In all, the footprint record of early reptiles supplements the skeletal record, suggesting possible future lines of research.
    Content: Peer Reviewed
    In: Lausanne : Frontiers Media, 9
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edochu_18452_23720
    Format: 1 Online-Ressource (24 Seiten)
    Content: Among amniote and non-amniote tetrapod trackways from late Carboniferous to early Permian deposits, certain trackway measures vary notably. Some of this variability can be attributed to evolutionary changes in trackmaker anatomy and locomotion style close to the origin of amniotes. Here we demonstrate that steps in early amniote locomotion evolution can be addressed by applying methods of ancestral state reconstruction on trackway data – a novel approach in tetrapod ichnology. Based on (a) measurements of 186 trackways referred to the Carboniferous and early Permian ichnogenera Batrachichnus, Limnopus, Hylopus, Amphisauropus, Matthewichnus, Ichniotherium, Dimetropus, Tambachichnium, Erpetopus, Varanopus, Hyloidichnus, Notalacerta and Dromopus, (b) correlation of these ichnotaxa with specific groups of amphibian, reptiliomorph, synapsid, and reptilian trackmakers based on imprint morphology and (c) known skeletal-morphology-based phylogenies of the supposed trackmakers, we infer ancestral states for functionally controlled trackway measures in a maximum likelihood approach. The most notable finding of our analysis is a concordant change in trackway parameters within a series of ancestral amniote trackmakers, which reflects an evolutionary change in locomotion: In the ancestors of amniotes and diadectomorphs, an increase in body size was accompanied by a decrease in (normalized) gauge width and glenoacetabular length and by a change in imprint orientation toward a more trackway-parallel and forward-pointing condition. In the subsequent evolution of diadectomorph, synapsid and reptilian trackmakers after the diversification of the clades Cotylosauria (Amniota + Diadectomorpha) and Amniota, stride length increased whereas gauges decreased further or remained relatively narrow within most lineages. In accordance with this conspicuous pattern of evolutionary change in trackway measures, we interpret the body size increase as an underlying factor that triggered the reorganization of the locomotion apparatus. The secondary increase in stride length, which occurred convergently within distinct groups, is interpreted as an increase in locomotion capability when the benefits of reorganization came into effect. The track-trackmaker pair of Ichniotherium sphaerodactylum and Orobates pabsti from the early Permian Bromacker locality of the Thuringian Forest, proposed in earlier studies as a suitable ancestral amniote track-trackmaker model, fits relatively well with our modeled last common ancestor of amniotes – with the caveat that the Bromacker material is younger and some of the similarities appear to be due to convergence.
    Content: Peer Reviewed
    Note: This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
    In: Lausanne : Frontiers Media, 9
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages