feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    UID:
    edochu_18452_23541
    Format: 1 Online-Ressource (12 Seiten)
    ISSN: 0140-7775 , 0140-7775
    Content: Encapsulation of the parasitic nematode Anguillicola crassus Kuwahara, Niimi & Hagaki is commonly observed in its native host, the Japanese eel (Anguilla japonica Temminck & Schlegel). Encapsulation has also been described in a novel host, the European eel (A. anguilla L.), and there is evidence that encapsulation frequency has increased since the introduction of A. crassus. We examined whether encapsulation of A. crassus provides an advantage to its novel host in Lake Müggelsee, NE Germany. We provide the first evidence that encapsulation was associated with reduced abundance of adult A. crassus. This pattern was consistent in samples taken 3 months apart. There was no influence of infection on the expression of the two metabolic genes studied, but the number of capsules was negatively correlated with the expression of two mhc II genes of the adaptive immune response, suggesting a reduced activation. Interestingly, eels that encapsulated A. crassus had higher abundances of two native parasites compared with non‐encapsulating eels. We propose that the response of A. anguilla to infection by A. crassus may interfere with its reaction to other co‐occurring parasites.
    Content: Peer Reviewed
    In: Journal of fish diseases, Oxford [u.a.] : Wiley-Blackwell, ,2020, 0140-7775
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edochu_18452_25469
    Format: 1 Online-Ressource (30 Seiten)
    Content: With the general objective of optimizing internal nutrient recycling, circular multitrophic food production systems, e.g., combining fish, plant, and insect larvae production, rely on the quality and composition of sustainable nutritional inputs. Therefore, differences in dissolved and solid nutrient excretion patterns produced by Nile tilapia (Oreochromis niloticus) reared in recirculating aquaculture systems (RAS) with 5% daily water exchange and fed black soldier fly meal (BSFM), poultry by-product meal (PM), poultry blood meal (PBM) and fish meal (FM) as single protein sources were investigated to evaluate the potential for creating specific fish meal-free diets. Fish fed the FM and PM diet showed the significantly best (p 〈 0.05) and among each other similar (p 〉 0.05) growth performance (specific growth rate (SGR): 2.12 ± 0.04/2.05 ± 0.11; feed conversion ratio (FCR): 0.86 ± 0.03/0.92 ± 0.01), whereas the PBM diet caused significantly reduced performance (SGR: 1.30 ± 0.02; FCR: 1.79 ± 0.05) in comparison to the FM/PM diet as well as the BSF diet (SGR: 1.76 ± 0.07; FCR: 1.11 ± 0.05). The FM and PM diet resulted in a faster increase and significantly higher dissolved nitrogen and phosphorus levels, while the BSF diet caused faster accumulation and significantly elevated levels of dissolved potassium, magnesium, and copper. The PBM diet resulted in the feces with the significantly highest nutrient density (gross energy, crude protein, and amino acids) but overall much lower dissolved nutrient levels in the water. Results are discussed with regard to implications for developing circular multitrophic food production systems.
    Content: Peer Reviewed
    In: Sustainability, Basel : MDPI, 14,2022,7
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    b3kat_BV025537652
    Format: Getr. Zählung , Ill., graph. Darst.
    Note: Berlin, Humboldt-Univ., Habil.-Schr., 2008
    Language: English
    Keywords: Hochschulschrift
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    UID:
    edochu_18452_27207
    Format: 1 Online-Ressource (30 Seiten)
    Content: In order to further close nutrient cycles of aquaponic systems, it could be possible to integrate a third trophic level in the form of insect larvae production (i.e., black soldier fly larvae) to recycle internal waste streams into valuable nutrients. This would present opportunities to formulate sustainable circular aquafeeds that combine these internally available nutrients with complementary external raw materials. The ingredient composition of feeds for such circular multitrophic food production systems (CMFS) may affect fish performance as well as excretion of important dissolved plant nutrients such as N, P and K. Hence, fish meal from catfish processing (CM) as base ingredient was combined with variable levels of poultry by-product meal (PM) and black soldier fly larvae meal (BSFM) into three marine-ingredient-free experimental diets corresponding to hypothetical production scenarios of a CMFS that aims to integrate aquaponics with insect larvae production. These experimental diets and a commercial diet (COM) were compared using isonitrogenous and isolipidic formulations. They were fed to African catfish (Clarias gariepinus) in recirculating aquaculture systems (RAS) and evaluated concerning growth performance and nutrient excretion. All diets resulted in similar total inorganic nitrogen (TIN) excretion, whereas the increase of dietary PM inclusion from 0% (BSF diet) to 20% (MIX diet) and to 41% (PM diet) and concomitant reduction of BSFM inclusion led to increasingly higher soluble reactive phosphorus (SRP) excretion per unit of feed compared to the COM diet. While the PM diet enabled the best growth and feed conversion performance, the MIX and especially the BSF diet produced more similar performance to the COM diet, which generated the highest dissolved K excretion. The MIX and the PM diet resulted in the highest Ca and P, yet lower N content in the fish feces. Results indicate that combining CM with elevated levels of PM in the diet of African catfish could improve growth performance and reduce the need for P fertilization in aquaponics when compared to industrial diets optimized for low environmental impact. Findings are discussed regarding their implications for CMFS and aquaponic feed formulation.
    Content: Peer Reviewed
    In: Sustainability, Basel : MDPI, 15,2023,9
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edochu_18452_23914
    Format: 1 Online-Ressource (13 Seiten)
    Content: Artificial light at night (ALAN) can disrupt biological rhythms of fish and other vertebrates by changing the light information of the nocturnal environment. Disrupted biorhythms can impair the immune system of vertebrates as it has been shown for conditions with continuous illumination or long-day photoperiod in many vertebrates, including fish. Nonetheless, this has not been shown so far for typical ALAN scenarios with high light intensities during day and low light intensities at night. Therefore, in this study, proxies for the innate immune system and oxidative stress as well as body indices of Eurasian perch Perca fluviatilis were measured under a wide range of intensities of nocturnal illumination. The authors found no changes in parameters of the innate immune system and no significant changes in proxies for oxidative stress after 2-week exposures to nocturnal illuminance ranging from 0.01 lx to 1 lx in one experiment or from 1 lx to 100 lx in a second experiment. A decrease in the hepato-somatic index at the highest tested light intensity of 100 lx compared to the dark control was the only significant difference in all parameters among treatments. After 2 weeks of exposure, ALAN does not seem to seriously challenge the innate immune system and seems to cause less oxidative stress than expected. The results of this study contradict the findings from other studies applying continuous illumination or long-day photoperiod and highlight the importance of further research in this field. Because ALAN represents a sustained modulation of the environment that may have cumulative effects over time, long-term studies are required for a better understanding of how ALAN modulates the health of fish.
    Content: Peer Reviewed
    In: Oxford [u.a.] : Wiley-Blackwell, 59,1, Seiten 118-130
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edochu_18452_27080
    Format: 1 Online-Ressource (14 Seiten)
    Content: Intraspecific diet specialization, usually driven by resource availability, competition and predation, is common in natural populations. However, the role of parasites on diet specialization of their hosts has rarely been studied. Eye flukes can impair vision ability of their hosts and have been associated with alterations of fish feeding behavior. Here it was assessed whether European perch (Perca fluviatilis) alter their diet composition as a consequence of infection with eye flukes. Young-of-the-year (YOY) perch from temperate Lake Müggelsee (Berlin, Germany) were sampled in two years, eye flukes counted and fish diet was evaluated using both stomach content and stable isotope analyses. Perch diet was dominated by zooplankton and benthic macroinvertebrates. Both methods indicated that with increasing eye fluke infection intensity fish had a more selective diet, feeding mainly on the benthic macroinvertebrate Dikerogammarus villosus, while less intensively infected fish appeared to be generalist feeders showing no preference for any particular prey type. Our results show that infection with eye flukes can indirectly affect interaction of the host with lower trophic levels by altering the diet composition and highlight the underestimated role of parasites in food web studies.
    Content: Peer Reviewed
    In: London : Nature Publishing Group, 11,1
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edochu_18452_27880
    Format: 1 Online-Ressource (12 Seiten)
    Content: Aquaculture has become imperative to cover the demands for dietary animal protein. Simultaneously, it has to overcome prejudices from excessive use of antibiotics and environmental impacts. Natural supplements are traditionally applied orally. In this study, we demonstrated another pathway: the gills. Humic substances are immunostimulants and a natural part of every aquatic ecosystem, making them ideal to be used as bath stimulants. Five and 50 mg C/L of a fulvic acid-rich humic substance was added for 28 days to the water of juvenile rainbow trout (Oncorhynchus mykiss). This fulvic acid is characterized by a high content of phenolic moieties with persistent free radicals and a high electron exchange capacity. The high concentration of the fulvic acid significantly increased growth and reduced the food conversion ratio and the response to a handling-stressor. Phagocytosis and potential killing activity of head kidney leukocytes were increased, as well as the total oxyradical scavenging capacity (TOSC) and lysozyme activity in the gills. In conclusion, immunostimulation via gills is possible with our fulvic acid, and the high phenolic content improved overall health and stress resistance of fish.
    Content: Peer Reviewed
    In: London : Nature Publishing Group, 11,1
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    UID:
    edochu_18452_26485
    Format: 1 Online-Ressource (31 Seiten)
    Content: In aquaponics and circular multitrophic food production systems, dietary protein source, as well as fish species choice, particularly in cases of different nutritional physiology, could be factors affecting excreted nutrient profiles. Accordingly, growth performance, dissolved nutrient accumulation and feces nutrient profiles were evaluated for African catfish (Clarias gariepinus) reared in recirculating aquaculture systems (RAS) and fed single protein source diets based on black soldier fly larvae meal (BSF), poultry by-product meal (PM), poultry blood meal (PBM) and fish meal (FM) and the results were compared to previous findings for Nile tilapia (Oreochromis niloticus). All diets resulted in significantly different growth performances of African catfish, with FM producing the best growth performance, followed by PM, BSF and PBM. PM resulted in the highest soluble reactive phosphorus concentrations (SRP) in the RAS water; whereas, BSF resulted in the highest K, Mg and Cu concentrations. The highest feces nutrient density was recorded for PBM; whereas, FM and PM yielded the lowest feces nutrient density. Comparing African catfish to Nile tilapia revealed that the former showed significantly better growth performance with FM and PM, however, significantly weaker performance with BSF. Although dissolved K accumulation was similar between species across diets, significant differences were recorded for total inorganic nitrogen and SRP production per unit of feed for individual diets. Despite similar feces nutrient profiles, African catfish produce significantly less feces dry matter per unit of feed for each diet compared to Nile tilapia. Findings are discussed regarding their implications for aquafeed development in the context of circular multitrophic food production systems.
    Content: Peer Reviewed
    In: Sustainability, Basel : MDPI, 14,2022,21
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages