feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

The displayed data is currently being updated.
Unfortunately, the interlibrary loan index is currently not available.
Export
Filter
  • Berlin International  (1)
  • SB Großräschen
  • Grünes Gedächtnis
  • IGB Berlin
  • Bundesarchiv
  • F.-Ebert-Stiftung
  • HNE Eberswalde
  • KEB Elbe-Elster
  • GB Brieselang
  • SB Freyenstein
  • GB Großbeeren
  • GB Sperenberg
  • Minku, Leandro  (1)
  • Electronic books  (1)
Type of Medium
Language
Region
Library
  • Berlin International  (1)
  • SB Großräschen
  • Grünes Gedächtnis
  • IGB Berlin
  • Bundesarchiv
  • +
Years
Keywords
  • Electronic books  (1)
  • 1
    Online Resource
    Online Resource
    San Diego : Elsevier Science and Technology
    UID:
    kobvindex_INTEBC1910044
    Format: 1 online resource (415 pages)
    Edition: 1st ed.
    ISBN: 9780124173071
    Note: Front Cover -- Sharing Data and Models in Software Engineering -- Copyright -- Why this book? -- Foreword -- Contents -- List of Figures -- Chapter 1: Introduction -- 1.1 Why Read This Book? -- 1.2 What Do We Mean by ``Sharing''? -- 1.2.1 Sharing Insights -- 1.2.2 Sharing Models -- 1.2.3 Sharing Data -- 1.2.4 Sharing Analysis Methods -- 1.2.5 Types of Sharing -- 1.2.6 Challenges with Sharing -- 1.2.7 How to Share -- 1.3 What? (Our Executive Summary) -- 1.3.1 An Overview -- 1.3.2 More Details -- 1.4 How to Read This Book -- 1.4.1 Data Analysis Patterns -- 1.5 But What About ...? (What Is Not in This Book) -- 1.5.1 What About ``Big Data''? -- 1.5.2 What About Related Work? -- 1.5.3 Why All the Defect Prediction and Effort Estimation? -- 1.6 Who? (About the Authors) -- 1.7 Who Else? (Acknowledgments) -- Part I: Data Mining for Managers -- Chapter 2: Rules for Managers -- 2.1 The Inductive Engineering Manifesto -- 2.2 More Rules -- Chapter 3: Rule #1: Talk to the Users -- 3.1 Users Biases -- 3.2 Data Mining Biases -- 3.3 Can We Avoid Bias? -- 3.4 Managing Biases -- 3.5 Summary -- Chapter 4: Rule #2: Know the Domain -- 4.1 Cautionary Tale #1: ``Discovering'' Random Noise -- 4.2 Cautionary Tale #2: Jumping at Shadows -- 4.3 Cautionary Tale #3: It Pays to Ask -- 4.4 Summary -- Chapter 5: Rule #3: Suspect Your Data -- 5.1 Controlling Data Collection -- 5.2 Problems with Controlled Data Collection -- 5.3 Rinse (and Prune) Before Use -- 5.3.1 Row Pruning -- 5.3.2 Column Pruning -- 5.4 On the Value of Pruning -- 5.5 Summary -- Chapter 6: Rule #4: Data Science Is Cyclic -- 6.1 The Knowledge Discovery Cycle -- 6.2 Evolving Cyclic Development -- 6.2.1 Scouting -- 6.2.2 Surveying -- 6.2.3 Building -- 6.2.4 Effort -- 6.3 Summary -- Part II: Data Mining: A Technical Tutorial -- Chapter 7: Data Mining and SE -- 7.1 Some Definitions -- 7.2 Some Application Areas , 12.6.3.3 Settings -- 12.6.3.4 Chunk (main function) -- 12.6.4 Support Utilities -- 12.6.4.1 Some standard tricks -- 12.6.4.2 Tree iterators -- 12.6.4.3 Pretty printing -- 12.7 Putting It all Together -- 12.7.1 _nasa93 -- 12.8 Using CHUNK -- 12.9 Closing Remarks -- Chapter 13: Cross-Company Learning: Handling the Data Drought -- 13.1 Motivation -- 13.2 Setting the Ground for Analyses -- 13.2.1 Wait ... Is This Really CC Data? -- 13.2.2 Mining the Data -- 13.2.3 Magic Trick: NN Relevancy Filtering -- 13.3 Analysis #1: Can CC Data be Useful for an Organization? -- 13.3.1 Design -- 13.3.2 Results from Analysis #1 -- 13.3.3 Checking the Analysis #1 Results -- 13.3.4 Discussion of Analysis #1 -- 13.4 Analysis #2: How to Cleanup CC Data for Local Tuning? -- 13.4.1 Design -- 13.4.2 Results -- 13.4.3 Discussions -- 13.5 Analysis #3: How Much Local Data Does an Organization Need for a Local Model? -- 13.5.1 Design -- 13.5.2 Results from Analysis #3 -- 13.5.3 Checking the Analysis #3 Results -- 13.5.4 Discussion of Analysis #3 -- 13.6 How Trustworthy Are These Results? -- 13.7 Are These Useful in Practice or Just Number Crunching? -- 13.8 What's New on Cross-Learning? -- 13.8.1 Discussion -- 13.9 What's the Takeaway? -- Chapter 14: Building Smarter Transfer Learners -- 14.1 What Is Actually the Problem? -- 14.2 What Do We Know So Far? -- 14.2.1 Transfer Learning -- 14.2.2 Transfer Learning and SE -- 14.2.3 Data Set Shift -- 14.3 An Example Technology: TEAK -- 14.4 The Details of the Experiments -- 14.4.1 Performance Comparison -- 14.4.2 Performance Measures -- 14.4.3 Retrieval Tendency -- 14.5 Results -- 14.5.1 Performance Comparison -- 14.5.2 Inspecting Selection Tendencies -- 14.6 Discussion -- 14.7 What Are the Takeaways? -- Chapter 15: Sharing Less Data (Is a Good Thing) -- 15.1 Can We Share Less Data? -- 15.2 Using Less Data -- 15.3 Why Share Less Data? , 15.3.1 Less Data Is More Reliable -- 15.3.2 Less Data Is Faster to Discuss -- 15.3.3 Less Data Is Easier to Process -- 15.4 How to Find Less Data -- 15.4.1 Input -- 15.4.2 Comparisons to Other Learners -- 15.4.3 Reporting the Results -- 15.4.4 Discussion of Results -- 15.5 What's Next? -- Chapter 16: How to Keep Your Data Private -- 16.1 Motivation -- 16.2 What Is PPDP and Why Is It Important? -- 16.3 What Is Considered a Breach of Privacy? -- 16.4 How to Avoid Privacy Breaches? -- 16.4.1 Generalization and Suppression -- 16.4.2 Anatomization and Permutation -- 16.4.3 Perturbation -- 16.4.4 Output Perturbation -- 16.5 How Are Privacy-Preserving Algorithms Evaluated? -- 16.5.1 Privacy Metrics -- 16.5.2 Modeling the Background Knowledge of an Attacker -- 16.6 Case Study: Privacy and Cross-Company Defect Prediction -- 16.6.1 Results and Contributions -- 16.6.2 Privacy and CCDP -- 16.6.3 CLIFF -- 16.6.4 MORPH -- 16.6.5 Example of CLIFF& -- MORPH -- 16.6.6 Evaluation Metrics -- 16.6.7 Evaluating Utility via Classification -- 16.6.8 Evaluating Privatization -- 16.6.8.1 Defining privacy -- 16.6.9 Experiments -- 16.6.9.1 Data -- 16.6.10 Design -- 16.6.11 Defect Predictors -- 16.6.12 Query Generator -- 16.6.13 Benchmark Privacy Algorithms -- 16.6.14 Experimental Evaluation -- 16.6.15 Discussion -- 16.6.16 Related Work: Privacy in SE -- 16.6.17 Summary -- Chapter 17: Compensating for Missing Data -- 17.1 Background Notes on SEE and Instance Selection -- 17.1.1 Software Effort Estimation -- 17.1.2 Instance Selection in SEE -- 17.2 Data Sets and Performance Measures -- 17.2.1 Data Sets -- 17.2.2 Error Measures -- 17.3 Experimental Conditions -- 17.3.1 The Algorithms Adopted -- 17.3.2 Proposed Method: POP1 -- 17.3.3 Experiments -- 17.4 Results -- 17.4.1 Results Without Instance Selection -- 17.4.2 Results with Instance Selection -- 17.5 Summary , 21.2 Related Work , Chapter 18: Active Learning: Learning More with Less -- 18.1 How Does the QUICK Algorithm Work? -- 18.1.1 Getting Rid of Similar Features: Synonym Pruning -- 18.1.2 Getting Rid of Dissimilar Instances: Outlier Pruning -- 18.2 Notes on Active Learning -- 18.3 The Application and Implementation Details of QUICK -- 18.3.1 Phase 1: Synonym Pruning -- 18.3.2 Phase 2: Outlier Removal and Estimation -- 18.3.3 Seeing QUICK in Action with a Toy Example -- 18.3.3.1 Phase 1: Synonym pruning -- 18.3.3.2 Phase 2: Outlier removal and estimation -- 18.4 How the Experiments Are Designed -- 18.5 Results -- 18.5.1 Performance -- 18.5.2 Reduction via Synonym and Outlier Pruning -- 18.5.3 Comparison of QUICK vs. CART -- 18.5.4 Detailed Look at the Statistical Analysis -- 18.5.5 Early Results on Defect Data Sets -- 18.6 Summary -- Part IV: Sharing Models -- Chapter 19: Sharing Models: Challenges and Methods -- Chapter 20: Ensembles of Learning Machines -- 20.1 When and Why Ensembles Work -- 20.1.1 Intuition -- 20.1.2 Theoretical Foundation -- 20.2 Bootstrap Aggregating (Bagging) -- 20.2.1 How Bagging Works -- 20.2.2 When and Why Bagging Works -- 20.2.3 Potential Advantages of Bagging for SEE -- 20.3 Regression Trees (RTs) for Bagging -- 20.4 Evaluation Framework -- 20.4.1 Choice of Data Sets and Preprocessing Techniques -- 20.4.1.1 PROMISE data -- 20.4.1.2 ISBSG data -- 20.4.2 Choice of Learning Machines -- 20.4.3 Choice of Evaluation Methods -- 20.4.4 Choice of Parameters -- 20.5 Evaluation of Bagging+RTs in SEE -- 20.5.1 Friedman Ranking -- 20.5.2 Approaches Most Often Ranked First or Second in Terms of MAE, MMRE and PRED(25) -- 20.5.3 Magnitude of Performance Against the Best -- 20.5.4 Discussion -- 20.6 Further Understanding of Bagging+RTs in SEE -- 20.7 Summary -- Chapter 21: How to Adapt Models in a Dynamic World -- 21.1 Cross-Company Data and Questions Tackled , Chapter 8: Defect Prediction -- 8.1 Defect Detection Economics -- 8.2 Static Code Defect Prediction -- 8.2.1 Easy to Use -- 8.2.2 Widely Used -- 8.2.3 Useful -- Chapter 9: Effort Estimation -- 9.1 The Estimation Problem -- 9.2 How to Make Estimates -- 9.2.1 Expert-Based Estimation -- 9.2.2 Model-Based Estimation -- 9.2.3 Hybrid Methods -- Chapter 10: Data Mining (Under the Hood) -- 10.1 Data Carving -- 10.2 About the Data -- 10.3 Cohen Pruning -- 10.4 Discretization -- 10.4.1 Other Discretization Methods -- 10.5 Column Pruning -- 10.6 Row Pruning -- 10.7 Cluster Pruning -- 10.7.1 Advantages of Prototypes -- 10.7.2 Advantages of Clustering -- 10.8 Contrast Pruning -- 10.9 Goal Pruning -- 10.10 Extensions for Continuous Classes -- 10.10.1 How RTs Work -- 10.10.2 Creating Splits for Categorical Input Features -- 10.10.3 Splits on Numeric Input Features -- 10.10.4 Termination Condition and Predictions -- 10.10.5 Potential Advantages of RTs for Software Effort Estimation -- 10.10.6 Predictions for Multiple Numeric Goals -- Part III: Sharing Data -- Chapter 11: Sharing Data: Challenges and Methods -- 11.1 Houston, We Have a Problem -- 11.2 Good News, Everyone -- Chapter 12: Learning Contexts -- 12.1 Background -- 12.2 Manual Methods for Contextualization -- 12.3 Automatic Methods -- 12.4 Other Motivation to Find Contexts -- 12.4.1 Variance Reduction -- 12.4.2 Anomaly Detection -- 12.4.3 Certification Envelopes -- 12.4.4 Incremental Learning -- 12.4.5 Compression -- 12.4.6 Optimization -- 12.5 How to Find Local Regions -- 12.5.1 License -- 12.5.2 Installing CHUNK -- 12.5.3 Testing Your Installation -- 12.5.4 Applying CHUNK to Other Models -- 12.6 Inside CHUNK -- 12.6.1 Roadmap to Functions -- 12.6.2 Distance Calculations -- 12.6.2.1 Normalize -- 12.6.2.2 SquaredDifference -- 12.6.3 Dividing the Data -- 12.6.3.1 FastDiv -- 12.6.3.2 TwoDistantPoints
    Additional Edition: Print version Menzies, Tim Sharing Data and Models in Software Engineering San Diego : Elsevier Science & Technology,c2014 ISBN 9780124172951
    Language: English
    Keywords: Electronic books ; Electronic books
    URL: FULL  ((OIS Credentials Required))
    URL: FULL  ((OIS Credentials Required))
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages