feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Die angezeigten Daten werden derzeit aktualisiert.
Derzeit steht der Fernleihindex leider nicht zur Verfügung.
Exportieren
Filter
  • Brandenburg  (22)
  • UB Potsdam  (22)
  • Abraham Geiger Kolleg
  • SB Falkenberg
  • SB Schlieben
  • Steinmetz, Matthias  (22)
  • Hochschulschrift  (22)
  • 1
    UID:
    gbv_846805081
    Umfang: xviii, 303 Seiten , Illustrationen, Diagramme
    Inhalt: Galaxies are observational probes to study the Large Scale Structure. Their gravitational motions are tracers of the total matter density and therefore of the Large Scale Structure. Besides, studies of structure formation and galaxy evolution rely on numerical cosmological simulations. Still, only one universe observable from a given position, in time and space, is available for comparisons with simulations. The related cosmic variance affects our ability to interpret the results. Simulations constrained by observational data are a perfect remedy to this problem. Achieving such simulations requires the projects Cosmic flows and CLUES. Cosmic flows builds catalogs of accurate distance measurements to map deviations from the expansion. These measures are mainly obtained with the galaxy luminosity-rotation rate correlation. We present the calibration of that relation in the mid-infrared with observational data from Spitzer Space Telescope. Resulting accurate distance estimates will be included in the third catalog of the project. In the meantime, two catalogs up to 30 and 150 Mpc/h have been released. We report improvements and applications of the CLUES' method on these two catalogs. The technique is based on the constrained realization algorithm. The cosmic displacement field is computed with the Zel'dovich approximation. This latter is then reversed to relocate reconstructed three-dimensional constraints to their precursors' positions in the initial field. The size of the second catalog (8000 galaxies within 150 Mpc/h) highlighted the importance of minimizing the observational biases. By carrying out tests on mock catalogs, built from cosmological simulations, a method to minimize observational bias can be derived. Finally, for the first time, cosmological simulations are constrained solely by peculiar velocities. The process is successful as resulting simulations resemble the Local Universe. The major attractors and voids are simulated at positions approaching observational positions by a few megaparsecs, thus reaching the limit imposed by the linear theory.
    Anmerkung: Thèse délivrée par LʹUniversité Claude Bernard de Lyon 1, France et préparée en cotutelle avec LʹUniversité de Potsdam, Allemagne (Promotionsverfahren in zwei Ländern) , Dissertation Université de Potsdam 2014 , Dissertation University of Lyon 2014
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Sorce, Jenny From Spitzer mid-infrared observations and measurements of peculiar velocities to constrained simulations of the local universe Potsdam, 2015
    Sprache: Englisch
    Schlagwort(e): Spitzer Space Telescope ; MIR ; Galaxie ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    gbv_1745283013
    Umfang: viii, 97 Seiten , Illustrationen, Diagramme
    Inhalt: Galaxies are gravitationally bound systems of stars, gas, dust and - probably - dark matter. They are the building blocks of the Universe. The morphology of galaxies is diverse: some galaxies have structures such as spirals, bulges, bars, rings, lenses or inner disks, among others. The main processes that characterise galaxy evolution can be separated into fast violent events that dominated evolution at earlier times and slower processes, which constitute a phase called secular evolution, that became dominant at later times. Internal processes of secular evolution include the gradual rearrangement of matter and angular momentum, the build-up and dissolution of substructures or the feeding of supermassive black holes and their feedback. Galaxy bulges – bright central components in disc galaxies –, on one hand, are relics of galaxy formation and evolution. For instance, the presence of a classical bulge suggests a relatively violent history. In contrast, the presence of a disc-like bulge instead indicates the occurrence of secular ...
    Anmerkung: Dissertation Universität Potsdam 2020
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Neumann, Justus Secular evolution in galaxies Potsdam, 2019
    Sprache: Englisch
    Schlagwort(e): Hochschulschrift
    Mehr zum Autor: Wisotzki, Lutz
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    gbv_1010056905
    Umfang: 141 Seiten , Illustrationen, Diagramme
    Inhalt: Observational and computational extragalactic astrophysics are two fields of research that study a similar subject from different perspectives. Observational extragalactic astrophysics aims, by recovering the spectral energy distribution of galaxies at different wavelengths, to reliably measure their properties at different cosmic times and in a large variety of environments. Analyzing the light collected by the instruments, observers try to disentangle the different processes occurring in galaxies at the scales of galactic physics, as well as the effect of larger scale processes such as mergers and accretion, in order to obtain a consistent picture of galaxy formation and evolution. On the other hand, hydrodynamical simulations of galaxy formation in cosmological context are able to follow the evolution of a galaxy along cosmic time, taking into account both external processes such as mergers, interactions and accretion, and internal mechanisms such as feedback from Supernovae and Active Galactic Nuclei. Due to the great advances in…
    Anmerkung: Dissertation Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät 2017
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Guidi, Giovanni Connecting simulations and observations in galaxy formation studies Potsdam, 2017
    Sprache: Englisch
    Schlagwort(e): Extragalaktisches Objekt ; Galaxie ; Entstehung ; Hydrodynamik ; Computersimulation ; Akkretion ; Supernova ; Aktiver galaktischer Kern ; Fotometrie ; Energiespektrum ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    UID:
    gbv_771644671
    Umfang: VIII, 130 S. , Ill., graph. Darst.
    Inhalt: Despite striking evidence for the existence of dark matter from astrophysical observations, dark matter has still escaped any direct or indirect detection until today. Therefore a proof for its existence and the revelation of its nature belongs to one of the most intriguing challenges of nowadays cosmology and particle physics. The present work tries to investigate the nature of dark matter through indirect signatures from dark matter annihilation into electron-positron pairs in two different ways, pressure from dark matter annihilation and multi-messenger constraints on the dark matter annihilation cross-section. We focus on dark matter annihilation into electron-positron pairs and adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E_0 ~ m_dm*c^2. The propagation of these particles is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung, and ionization. The first part of this work, focusing on pressure from dark matter annihilation, demonstrates that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. The injection rate of this calculation is constrained by INTEGRAL, Fermi, and H.E.S.S. data. The pressure of the relativistic electron-positron gas is computed from the energy spectrum predicted by the diffusion-loss equation. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that the pressure gradients are strong enough to balance gravity in the central parts if E_0 〈 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on kiloparsec scales for most values of E_0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of the halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs). In the second part, upper limits on the dark matter annihilation cross-section into electron-positron pairs are obtained by combining observed data at different wavelengths (from Haslam, WMAP, and Fermi all-sky intensity maps) with recent measurements of the electron and positron spectra in the solar neighbourhood by PAMELA, Fermi, and H.E.S.S.. We consider synchrotron emission in the radio and microwave bands, as well as inverse Compton scattering and final-state radiation at gamma-ray energies. For most values of the model parameters, the tightest constraints are imposed by the local positron spectrum and synchrotron emission from the central regions of the Galaxy. According to our results, the annihilation cross-section should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also derive a stringent upper limit on the inner logarithmic slope α of the density profile of the Milky Way dark matter halo (α 〈 1 if m_dm 〈 5 GeV, α 〈 1.3 if m_dm 〈 100 GeV and α 〈 1.5 if m_dm 〈 2 TeV) assuming a dark matter annihilation cross-section into electron-positron pairs (σv) = 3*10^−26 cm^3 s^−1, as predicted for thermal relics from the big bang.
    Anmerkung: Potsdam, Univ., Diss., 2013
    Weitere Ausg.: Online-Ausg. Wechakama, Maneenate Multi-messenger constraints and pressure from dark matter annihilation into electron-positron pairs 2013
    Sprache: Englisch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    UID:
    gbv_1014826144
    Umfang: iii, 114 Seiten , Illustrationen, Diagramme
    Anmerkung: Enthält 3 Publikationen , Dissertation (kumulativ) Universität Potsdam 2017
    Sprache: Englisch
    Schlagwort(e): Milchstraßensystem ; Stellare Archäologie ; Galaxie ; Entstehung ; Chemische Eigenschaft ; Kinematik ; Metall ; Hochschulschrift
    Mehr zum Autor: Wojno, Jennifer Leigh
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    UID:
    gbv_1739135962
    Umfang: 1 Online-Ressource (1 Band (unterschiedliche Seitenzählungen), 18351 KB) , Illustrationen, Diagramme
    Inhalt: During a dark night, it is possible to observe thousands of stars by eye. All these stars are located within the Milky Way, our home. Not all stars are the same, they can have different sizes, masses, temperatures and ages. Heavy stars do not live long (in astronomical terms), only a few million years, but stars less massive than the Sun can get more than ten billion years old. Such small stars that formed in the beginning of the Universe still shine today. These ancient stars are very helpful to learn more about the early Universe, the First Stars and the history of the Milky Way. But how do you recognise an ancient star? Using their chemical fingerprints! In the beginning of the Universe, there were only two chemical elements: hydrogen and helium (and a tiny bit of lithium). All the heavier elements like carbon, calcium and iron were only made later within stars and their explosions. The amount of chemical elements in the Universe increases with the number of stars that are born, evolve and explode. Stars that form later are born ...
    Anmerkung: kumulative Dissertation , Dissertation Universität Potsdam 2020
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Arentsen, Anke Galactic archaeology with the oldest stars in the Milky Way Potsdam, 2020
    Sprache: Englisch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    UID:
    gbv_1847937187
    Umfang: 1 Online-Ressource (xi, 187 Seiten, 34207 KB) , Illustrationen, Diagramme
    Inhalt: In recent decades, astronomy has seen a boom in large-scale stellar surveys of the Galaxy. The detailed information obtained about millions of individual stars in the Milky Way is bringing us a step closer to answering one of the most outstanding questions in astrophysics: how do galaxies form and evolve? The Milky Way is the only galaxy where we can dissect many stars into their high-dimensional chemical composition and complete phase space, which analogously as fossil records can unveil the past history of the genesis of the Galaxy. The processes that lead to large structure formation, such as the Milky Way, are critical for constraining cosmological models; we call this line of study Galactic archaeology or near-field cosmology. At the core of this work, we present a collection of efforts to chemically and dynamically characterise the disks and bulge of our Galaxy. The results we present in this thesis have only been possible thanks to the advent of the Gaia astrometric satellite, which has revolutionised the field of Galactic ...
    Anmerkung: Dissertation Universität Potsdam 2023
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe De Andrade Queiroz, Anna Barbara The Milky Way disks, bulge, and bar sub-populations Potsdam, 2023
    Sprache: Englisch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    UID:
    gbv_769315402
    Umfang: Online-Ressource (PDF-Datei 19008 KB, VIII, 130 S.) , Ill., graph. Darst.
    Inhalt: Despite striking evidence for the existence of dark matter from astrophysical observations, dark matter has still escaped any direct or indirect detection until today. Therefore a proof for its existence and the revelation of its nature belongs to one of the most intriguing challenges of nowadays cosmology and particle physics. The present work tries to investigate the nature of dark matter through indirect signatures from dark matter annihilation into electron-positron pairs in two different ways, pressure from dark matter annihilation and multi-messenger constraints on the dark matter annihilation cross-section. We focus on dark matter annihilation into electron-positron pairs and adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E_0 ~ m_dm*c^2. The propagation of these particles is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung, and ionization. The first part of this work, focusing on pressure from dark matter annihilation, demonstrates that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. The injection rate of this calculation is constrained by INTEGRAL, Fermi, and H.E.S.S. data. The pressure of the relativistic electron-positron gas is computed from the energy spectrum predicted by the diffusion-loss equation. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that the pressure gradients are strong enough to balance gravity in the central parts if E_0 〈 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on kiloparsec scales for most values of E_0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of the halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs). In the second part, upper limits on the dark matter annihilation cross-section into electron-positron pairs are obtained by combining observed data at different wavelengths (from Haslam, WMAP, and Fermi all-sky intensity maps) with recent measurements of the electron and positron spectra in the solar neighbourhood by PAMELA, Fermi, and H.E.S.S.. We consider synchrotron emission in the radio and microwave bands, as well as inverse Compton scattering and final-state radiation at gamma-ray energies. For most values of the model parameters, the tightest constraints are imposed by the local positron spectrum and synchrotron emission from the central regions of the Galaxy. According to our results, the annihilation cross-section should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also derive a stringent upper limit on the inner logarithmic slope α of the density profile of the Milky Way dark matter halo (α 〈 1 if m_dm 〈 5 GeV, α 〈 1.3 if m_dm 〈 100 GeV and α 〈 1.5 if m_dm 〈 2 TeV) assuming a dark matter annihilation cross-section into electron-positron pairs (σv) = 3*10^−26 cm^3 s^−1, as predicted for thermal relics from the big bang.
    Anmerkung: Potsdam, Univ., Diss., 2013
    Weitere Ausg.: Druckausg. Wechakama, Maneenate Multi-messenger constraints and pressure from dark matter annihilation into electron-positron pairs 2013
    Sprache: Englisch
    Schlagwort(e): Hochschulschrift
    URL: Volltext  (kostenfrei)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    UID:
    gbv_172916322X
    Umfang: iii, 151 Seiten , Illustrationen, Diagramme
    Inhalt: The Milky Way is a spiral galaxy consisting of a disc of gas, dust and stars embedded in a halo of dark matter. Within this dark matter halo there is also a diffuse population of stars called the stellar halo, that has been accreting stars for billions of years from smaller galaxies that get pulled in and disrupted by the large gravitational potential of the Milky Way. As they are disrupted, these galaxies leave behind long streams of stars that can take billions of years to mix with the rest of the stars in the halo. Furthermore, the amount of heavy elements (metallicity) of the stars in these galaxies reflects the rate of chemical enrichment that occurred in them, since the Universe has been slowly enriched in heavy elements (e.g. iron) through successive generations of stars which produce them in their cores and supernovae explosions. Therefore, stars that contain small amounts of heavy elements (metal-poor stars) either formed at early times before the Universe was significantly enriched, or in isolated environments. The aim of ...
    Anmerkung: Dissertation Universität Potsdam 2020
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Youakim, Kris Galactic archaeology with metal-poor stars from the Pristine survey Potsdam, 2020
    Sprache: Englisch
    Schlagwort(e): Milchstraßensystem ; Galaktischer Halo ; Metallarmer Stern ; Astrofotometrie ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    UID:
    gbv_1739137612
    Umfang: 1 Band (verschiedene Seitenzählungen) , Illustrationen, Diagramme
    Inhalt: During a dark night, it is possible to observe thousands of stars by eye. All these stars are located within the Milky Way, our home. Not all stars are the same, they can have different sizes, masses, temperatures and ages. Heavy stars do not live long (in astronomical terms), only a few million years, but stars less massive than the Sun can get more than ten billion years old. Such small stars that formed in the beginning of the Universe still shine today. These ancient stars are very helpful to learn more about the early Universe, the First Stars and the history of the Milky Way. But how do you recognise an ancient star? Using their chemical fingerprints! In the beginning of the Universe, there were only two chemical elements: hydrogen and helium (and a tiny bit of lithium). All the heavier elements like carbon, calcium and iron were only made later within stars and their explosions. The amount of chemical elements in the Universe increases with the number of stars that are born, evolve and explode. Stars that form later are born ...
    Anmerkung: kumulative Dissertation , Dissertation Universität Potsdam 2020
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Arentsen, Anke Galactic archaeology with the oldest stars in the Milky Way Potsdam, 2020
    Sprache: Englisch
    Schlagwort(e): Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz