Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Applied Physiology, American Physiological Society, Vol. 123, No. 6 ( 2017-12-01), p. 1599-1609
    Abstract: We employed near-infrared optical techniques, diffuse correlation spectroscopy (DCS), and frequency-domain near-infrared spectroscopy (FD-NIRS) to test the hypothesis that supervised exercise training increases skeletal muscle microvascular blood flow and oxygen extraction in patients with peripheral artery disease (PAD) who experience claudication. PAD patients ( n = 64) were randomly assigned to exercise and control groups. Patients in the exercise group received 3 mo of supervised exercise training. Calf muscle blood flow and oxygen extraction were optically monitored before, during, and after performance of a graded treadmill protocol at baseline and at 3 mo in both groups. Additionally, measurements of the ankle-brachial index (ABI) and peak walking time (PWT) to maximal claudication were made during each patient visit. Supervised exercise training was found to increase the maximal calf muscle blood flow and oxygen extraction levels during treadmill exercise by 29% (13%, 50%) and 8% (1%, 12%), respectively [ P 〈 0.001; median (25th percentile, 75th percentile)]. These improvements across the exercise group population were significantly higher than corresponding changes in the control group ( P 〈 0.004). Exercise training also increased PWT by 49% (18%, 101%) ( P = 0.01). However, within statistical error, the ABI, resting calf muscle blood flow and oxygen extraction, and the recovery half-time for hemoglobin\myoglobin desaturation following cessation of maximal exercise were not altered by exercise training. The concurrent monitoring of both blood flow and oxygen extraction with the hybrid DCS/FD-NIRS instrument revealed enhanced muscle oxidative metabolism during physical activity from exercise training, which could be an underlying mechanism for the observed improvement in PWT. NEW & NOTEWORTHY We report on noninvasive optical measurements of skeletal muscle blood flow and oxygen extraction dynamics before/during/after treadmill exercise in peripheral artery disease patients who experience claudication. The measurements tracked the effects of a 3-mo supervised exercise training protocol and revealed that supervised exercise training improved patient ability to increase microvascular calf muscle blood flow and oxygen extraction during physical activity.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2017
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 1962
    In:  Journal of Applied Physiology Vol. 17, No. 6 ( 1962-11-01), p. 913-916
    In: Journal of Applied Physiology, American Physiological Society, Vol. 17, No. 6 ( 1962-11-01), p. 913-916
    Abstract: The respiration of ten healthy male subjects was studied during 4-min exposures to vertical whole-body vibration of 0.15 and 0.35 g peak acceleration intensities of frequencies of 2 through 7 cycle/sec. Initial hyperventilation, with a subsequent return toward normal levels, occurred during the period of vibration. The breathing frequency decreased and the end-expiratory position dropped, but the vital capacity was not changed. Vibration-induced hyperventilation was most pronounced at 4–5 cycle/sec. Oxygen consumption was increased during vibration, with a maximum increase observed at the lowest frequencies. All changes were greater at 0.35 g than at 0.15 g acceleration. Except for a decreased alveolar CO 2 concentration, respiration during the 4-min recovery period did not significantly differ from the previbration levels. Submitted on May 14, 1962
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1962
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Physiological Society ; 1994
    In:  Journal of Applied Physiology Vol. 77, No. 4 ( 1994-10-01), p. 1926-1934
    In: Journal of Applied Physiology, American Physiological Society, Vol. 77, No. 4 ( 1994-10-01), p. 1926-1934
    Abstract: The time course of muscle contractile and cellular properties was studied in rabbit ankle flexor muscles after injury produced by eccentric exercise. Cyclic eccentric exercise was produced by increasing the tibiotarsal angle of the rabbit while activating the peroneal nerve by use of transcutaneous electrodes. Muscle properties were measured 1, 2, 3, 7, 14, and 28 days after exercise to define the time course of muscle changes after injury. A control group receiving only isometric contraction was used to study the effect of cyclic activation itself. The magnitude of the torque decline after 1 day was the same with use of isometric or eccentric exercise, but eccentric exercise resulted in a further decrease in torque after 2 days, at which time isometrically exercised muscles had fully recovered. The most prominent morphological changes in the injured muscle fibers were the loss of antibody staining for the desmin cytoskeletal protein and deposition of intracellular fibronectin, even when the injured muscle fibers retained their normal complement of contractile and enzymatic proteins. The presence of fibronectin inside the myofibers indicated a loss of cellular integrity. Invasion by inflammatory cells was apparent on the basis of localization of embryonic myosin. Thus eccentric exercise initiates a series of events that results in disruption of the cytoskeletal network and an inflammatory response that could be the mechanism for further deterioration of the contractile response.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1994
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Applied Physiology, American Physiological Society, Vol. 99, No. 4 ( 2005-10), p. 1582-1591
    Abstract: Previous in vitro and in vivo animal studies showed that O 2 and CO 2 concentrations can affect virulence of pathogenic bacteria such as Staphylococcus aureus. The objective of this work was to measure O 2 and CO 2 levels in the vaginal environment during tampon wear using newly available sensor technology. Measurements by two vaginal sensors showed a decrease in vaginal O 2 levels after tampon insertion. These decreases were independent of the type of tampons used and the time of measurement (mid-cycle or during menstruation). These results are not in agreement with a previous study that concluded that oxygenation of the vaginal environment during tampon use occurred via delivery of a bolus of O 2 during the insertion process. Our measurements of gas levels in menses showed the presence of both O 2 and CO 2 in menses. The tampons inserted into the vagina contained O 2 and CO 2 levels consistent with atmospheric conditions. Over time during tampon use, levels of O 2 in the tampon decreased and levels of CO 2 increased. Tampon absorbent capacity, menses loading, and wear time influenced the kinetics of these changes. Colonization with S. aureus had no effect on the gas profiles during menstruation. Taken collectively, these findings have important implications on the current understanding of gaseous changes in the vaginal environment during menstruation and the potential role(s) they may play in affecting bacterial virulence factor production.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2005
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Physiological Society ; 1996
    In:  Journal of Applied Physiology Vol. 81, No. 4 ( 1996-10-01), p. 1723-1729
    In: Journal of Applied Physiology, American Physiological Society, Vol. 81, No. 4 ( 1996-10-01), p. 1723-1729
    Abstract: Lasnier, Joseph M., O. Douglas Wangensteen, Laura S. Schmitz, Cynthia R. Gross, and David H. Ingbar. Terbutaline stimulates alveolar fluid resorption in hyperoxic lung injury. J. Appl. Physiol. 81(4): 1723–1729, 1996.—Alveolar fluid resorption occurs by active epithelial sodium transport and is accelerated by terbutaline in healthy lungs. We investigated the effect of terbutaline on the rate of alveolar fluid resorption from rat lungs injured by hyperoxia. Rats exposed to 〉 95% O 2 for 60 h, sufficient to increase wet-to-dry lung weight and cause alveolar edema, were compared with air-breathing control rats. After anesthesia, the animals breathed 100% O 2 for 10 min through a tracheostomy. Ringer solution was instilled into the alveoli, and the steady-state rate of volume resorbed at 6 cmH 2 O pressure was measured via a pipette attached to the tracheostomy tubing. Ringer solution in some animals contained terbutaline (10 −3 M), ouabain (10 −3 M), or both. Normoxic animals resorbed 49 ± 6 μl ⋅ kg −1 ⋅ min −1 ; ouabain reduced this by 39%, whereas terbutaline increased the rate by 75%. The effect of terbutaline was blocked by ouabain. Hyperoxic animals absorbed 78 ± 9 μl ⋅ kg −1 ⋅ min −1 ; ouabain reduced this by 44%. Terbutaline increased the rate by a mean of 39 μl ⋅ kg −1 ⋅ min −1 , similar to the absolute effect seen in the normoxic group, and this was blocked by ouabain. Terbutaline accelerates fluid resorption from both normal and injured rat lungs via its effects on active sodium transport.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1996
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Physiological Society ; 2003
    In:  Journal of Applied Physiology Vol. 94, No. 4 ( 2003-04-01), p. 1373-1379
    In: Journal of Applied Physiology, American Physiological Society, Vol. 94, No. 4 ( 2003-04-01), p. 1373-1379
    Abstract: Physical activity is known to increase insulin action in skeletal muscle, and data have indicated that 5′-AMP-activated protein kinase (AMPK) is involved in the molecular mechanisms behind this beneficial effect. 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) can be used as a pharmacological tool to repetitively activate AMPK, and the objective of this study was to explore whether the increase in insulin-stimulated glucose uptake after either long-term exercise or chronic AICAR administration was followed by fiber-type-specific changes in insulin signaling and/or changes in GLUT-4 expression. Wistar rats were allocated into three groups: an exercise group trained on treadmill for 5 days, an AICAR group exposed to daily subcutaneous injections of AICAR, and a sedentary control group. AMPK activity, insulin-stimulated glucose transport, insulin signaling, and GLUT-4 expression were determined in muscles characterized by different fiber type compositions. Both exercised and AICAR-injected animals displayed a fiber-type-specific increase in glucose transport with the most marked increase in muscles with a high content of type IIb fibers. This increase was accompanied by a concomitant increase in GLUT-4 expression. Insulin signaling as assessed by phosphatidylinositol 3-kinase and PKB/Akt activity was enhanced only after AICAR administration and in a non-fiber-type-specific manner. In conclusion, chronic AICAR administration and long-term exercise both improve insulin-stimulated glucose transport in skeletal muscle in a fiber-type-specific way, and this is associated with an increase in GLUT-4 content.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2003
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Physiological Society ; 2011
    In:  Journal of Applied Physiology Vol. 111, No. 6 ( 2011-12), p. 1687-1693
    In: Journal of Applied Physiology, American Physiological Society, Vol. 111, No. 6 ( 2011-12), p. 1687-1693
    Abstract: Experimental and clinical data support a role for estrogens in the development and growth of breast cancer, and lowered estrogen exposure reduces breast cancer recurrence and new diagnoses in high-risk women. There is varied evidence that increased physical activity is associated with breast cancer risk reduction in both pre- and postmenopausal women, perhaps via lowered estrogen levels. The purpose of this study was to assess whether exercise intervention in premenopausal women at increased breast cancer risk reduces estrogen or progesterone levels. Seven healthy premenopausal women at high risk for breast cancer completed a seven-menstrual-cycle study. The study began with two preintervention cycles of baseline measurement of hormone levels via daily first-morning urine collection, allowing calculation of average area under the curve (AUC) hormone exposure across the menstrual cycle. Participants then began five cycles of exercise training to a maintenance level of 300 min per week at 80–85% of maximal aerobic capacity. During the last two exercise cycles, urinary estradiol and progesterone levels were again measured daily. Total estrogen exposure declined by 18.9% and total progesterone exposure by 23.7%. The declines were mostly due to decreased luteal phase levels, although menstrual cycle and luteal phase lengths were unchanged. The study demonstrated the feasibility of daily urine samples and AUC measurement to assess hormone exposure in experimental studies of the impact of interventions on ovarian hormones. The results suggest value in exercise interventions to reduce hormone levels in high-risk women with few side effects and the potential for incremental benefits to surgical or pharmacologic interventions.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2011
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of Applied Physiology, American Physiological Society, Vol. 134, No. 4 ( 2023-04-01), p. 799-809
    Abstract: Electromyostimulation (EMS) is used to maintain or build skeletal muscle and to increase cardiopulmonary fitness. Only limited data on the molecular mechanisms induced by EMS are available and effects on circulating microRNAs (c-miRNAs) have not been reported. This study aimed to evaluate whether EMS induces long-term changes in muscle- and cardiovascular-specific c-miRNA levels. Twelve healthy participants (33.0 ± 12.0 yr, 7 women) performed a 20-min whole body EMS training and a time- and intensity-matched whole body circuit training (CT) in random order. Blood samples were drawn pre-/posttraining and at 1.5, 3, 24, 48, and 72 h to determine creatine kinase (CK) and miRNA-21-5p, -126-3p, -133a-3p, -146a-5p, -206-3p, -222-3p, and -499a-5p levels. Muscular exertion was determined using an isometric strength test, and muscle soreness/pain was assessed by questionnaire. EMS participants reported higher muscle soreness 48 and 72 h postexercise and mean CK levels after EMS increased compared with CT at 48 and 72 h (time × group P ≤ 0.01). The EMS session induced a significant elevation of myomiR-206 and -133a levels starting at 1.5 and 3 h after exercise. Both miRNAs remained elevated for 72 h with significant differences between 24 and 72 h (time × group P ≤ 0.0254). EMS did not induce changes in cardiovascular miRNAs and no elevation in any miRNA was detected following CT. Time-course analysis of muscle damage marker CK and c-miR-133a and -206 levels did not suggest a common scheme ( P ≥ 0.277). We conclude that a single EMS session induces specific long-lasting changes of miR-206 and miR-133 involved in muscle proliferation and differentiation. A single EMS session does not affect primary cardiovascular miRNA-21-5p, -126-3p, -146a-5p, and -222-3p levels. NEW & NOTEWORTHY Our study describes the long-term effects of electromyostimulation (EMS) on circulating miRNA levels. The observed increase of functional myomiR-206 and -133a levels over 72 h suggests long-lasting effects on muscle proliferation and differentiation, whereas cardiovascular miRNAs appear unaffected. Our findings suggest that circulating miRNAs provide useful insight into muscle regeneration processes after EMS and may thus be used to optimize EMS training effects.
    Type of Medium: Online Resource
    ISSN: 8750-7587 , 1522-1601
    RVK:
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2023
    detail.hit.zdb_id: 1404365-8
    SSG: 12
    SSG: 31
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages