Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Clinical Oncology (ASCO)  (3)
  • Al-Ahmadie, Hikmat  (3)
Type of Medium
Publisher
  • American Society of Clinical Oncology (ASCO)  (3)
Language
Years
Subjects(RVK)
  • 1
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 34, No. 2_suppl ( 2016-01-10), p. 473-473
    Abstract: 473 Background: Approximately 30% of patients with advanced germ cell tumor (aGCT) will progress after first-line chemotherapy. Nearly half of these patients will die of progressive GCT. We describe potentially actionable mutations in a cohort of patients with platinum-resistant aGCT through targeted sequencing. Methods: 76 patients with cisplatin-resistant (CR) disease were sequenced using the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay that examines 341 cancer-related genes. Patients were categorized as CR if they met any of the following criteria: 1) incomplete response to first-line cisplatin-based chemotherapy; 2) nonteratomatous tumor progression after standard chemotherapy; 3) nonteratomatous GCT identified at postchemo surgery. We grouped all somatic mutations into core signal transduction pathways or canonical cell functions to identify potential precise targets for therapy. Results: The majority of patients had nonseminoma histology (n = 64, 84%). International Germ Cell Cancer Collaborative Group risk was good, intermediate, and poor in 34%, 13%, and 53% of patients. 17 patients died of disease. In total, 51 potentially actionable alterations were identified in 36/76 (47%) patients. In the TP53 pathway, 7 MDM2 amplifications and 4 MYCN amplifications that may sensitize to nutlin-3 inhibitors were identified. Within the receptor tyrosine kinase pathway, 3 KIT mutations, 1 KDR amplification, and 1 MET amplification were seen that may sensitize to tyrosine kinase inhibitors. Eleven KRAS mutations, 3 NRAS mutations, 3 BRAF mutations, and 2 RAC1 mutations were see among the RAS pathway with preclinical data suggesting efficacy towards respective inhibitors. Actionable targets were also among the PI3-K, WNT, and cell cycle pathways. Potential targets with chromatin modifying or tumor suppressor functions were also seen. Conclusions: We describe actionable alterations that may guide treatment selection in a significant proportion of patients with CR aGCT. Targeted sequencing of these patients may allow us to enrich future clinical trials with patients whose tumors harbor alterations in the drug target of interest.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2016
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: JCO Precision Oncology, American Society of Clinical Oncology (ASCO), , No. 4 ( 2020-11), p. 1307-1320
    Abstract: Although primary germ cell tumors (GCTs) have been extensively characterized, molecular analysis of metastatic sites has been limited. We performed whole-exome sequencing and targeted next-generation sequencing on paired primary and metastatic GCT samples in a patient cohort enriched for cisplatin-resistant disease. PATIENTS AND METHODS Tissue sequencing was performed on 100 tumor specimens from 50 patients with metastatic GCT, and sequencing of plasma cell-free DNA was performed for a subset of patients. RESULTS The mutational landscape of primary and metastatic pairs from GCT patients was highly discordant (68% of all somatic mutations were discordant). Whereas genome duplication was common and highly concordant between primary and metastatic samples, only 25% of primary-metastasis pairs had ≥ 50% concordance at the level of DNA copy number alterations (CNAs). Evolutionary-based analyses revealed that most mutations arose after CNAs at the respective loci in both primary and metastatic samples, with oncogenic mutations enriched in the set of early-occurring mutations versus variants of unknown significance (VUSs). TP53 pathway alterations were identified in nine cisplatin-resistant patients and had the highest degree of concordance in primary and metastatic specimens, consistent with their association with this treatment-resistant phenotype. CONCLUSION Analysis of paired primary and metastatic GCT specimens revealed significant molecular heterogeneity for both CNAs and somatic mutations. Among loci demonstrating serial genetic evolution, most somatic mutations arose after CNAs, but oncogenic mutations were enriched in the set of early-occurring mutations as compared with VUSs. Alterations in TP53 were clonal when present and shared among primary-metastasis pairs.
    Type of Medium: Online Resource
    ISSN: 2473-4284
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2020
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 35, No. 15_suppl ( 2017-05-20), p. 4556-4556
    Abstract: 4556 Background: Tumor genomic analysis may be useful in patients with GCT as a means of identifying potentially actionable genomic alterations or mutations such as TP53 that confer resistance to chemotherapy. As GCTs often exhibit significant morphologic heterogeneity, we evaluated the level of concordance between genomic alterations in matched primary and metastatic GCT samples. Methods: GCT patients enrolled on an institutional prospective sequencing protocol with available primary and metastatic tumor tissue were eligible. Each tumor was subjected to MSK-IMPACT, an exon capture sequencing assay, which detects copy number alterations (CNAs) and mutations in 410 cancer-related genes. For each primary-metastasis pair, concordance and clonality was assessed using the FACETS algorithm. Results: Matched primary-metastasis tumor pairs were available for 36 patients (78% nonseminoma, 22% seminoma, median age 33.5 years). All patients received chemotherapy, with 25 (69%) receiving treatment prior to analysis of the metastatic samples. The frequency of genetic alterations was low with a median of 3 mutations (1-7), 7 amplifications (1-26) and 1 deletion (1-9) detected per sample, with no significant difference in mutational/CNA burden between primaries and metastases. Of 109 unique mutations across patients, only 44 (40%) were concordant between the primary and matched metastasis, including 5 of 9 hotspot mutations. For CNAs, 184 (81%) of 226 were concordant. Only 24 of 109 (22%) mutations were clonal (defined as predicted to be present in all cancer cells) in either the primary or metastatic matched samples; of these, only 4 were clonal in both the primary and metastatic samples, including 2 hotspots. However, 4 of 5 alterations in TP53/MDM2 were shared by both the primary and metastasis pairs. In a separate exploratory cohort, 4 TP53 mutations were identified in 3 primary tumors and 1 metastasis, and all 4 mutations were also detected by cell-free DNA profiling. Conclusions: Genomic concordance, particularly for mutations, is poor between primary and metastatic GCT samples. Cell-free DNA analysis may help overcome this limitation by identifying alterations in progressive tumors without need for a new biopsy.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2017
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages