Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (6)
  • Leitner, Martin  (6)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Journal of Manufacturing and Materials Processing Vol. 3, No. 1 ( 2019-02-01), p. 16-
    In: Journal of Manufacturing and Materials Processing, MDPI AG, Vol. 3, No. 1 ( 2019-02-01), p. 16-
    Abstract: This study shows the effect of hot isostatic pressing (HIP) on the porosity and the microstructure, as well as the corresponding fatigue strength of selectively-laser-melted (SLM) AlSi10Mg structures. To eliminate the influence of the as-built surface, all specimens are machined and exhibit a polished surface. To highlight the effect of the HIP treatment, the HIP specimens are compared to a test series without any post-treatment. The fatigue characteristic is evaluated by tension-compression high cycle fatigue tests under a load stress ratio of R = −1. The influence of HIP on the microstructural characteristics is investigated by utilizing scanning electron microscopy of micrographs of selected samples. In order to study the failure mechanism and the fatigue crack origin, a fracture surface analysis is carried out. It is found that, due to the HIP process and subsequent annealing, there is a beneficial effect on the microstructure regarding the fatigue crack propagation, such as Fe-rich precipitates and silicon agglomerations. This leads, combined with a significant reduction of global porosity and a decrease of micro pore sizes, to an improved fatigue resistance for the HIPed condition compared to the other test series within this study.
    Type of Medium: Online Resource
    ISSN: 2504-4494
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2911715-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Manufacturing and Materials Processing, MDPI AG, Vol. 3, No. 4 ( 2019-10-16), p. 89-
    Abstract: This paper focusses on the effect of hot isostatic pressing (HIP) and a solution annealing post treatment on the fatigue strength of selectively laser melted (SLM) AlSi10Mg structures. The aim of this work is to assess the effect of the unprocessed (as-built) surface and residual stresses, regarding the fatigue behaviour for each condition. The surface roughness of unprocessed specimens is evaluated based on digital light optical microscopy and subsequent three-dimensional image post processing. To holistically characterize contributing factors to the fatigue strength, the axial surface residual stress of all specimens with unprocessed surfaces is measured using X-ray diffraction. Furthermore, the in-depth residual stress distribution of selected samples is analyzed. The fatigue strength is evaluated by tension-compression high-cycle fatigue tests under a load stress ratio of R = −1. For the machined specimens, intrinsic defects like pores or intermetallic phases are identified as the failure origin. Regarding the unprocessed test series, surface features cause the failures that correspond to significantly reduced cyclic material properties of approximately −60% referring to machined ones. There are beneficial effects on the surface roughness and residual stresses evoked due to the post treatments. Considering the aforementioned influencing factors, this study provides a fatigue assessment of the mentioned conditions of the investigated Al-material.
    Type of Medium: Online Resource
    ISSN: 2504-4494
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2911715-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Metals, MDPI AG, Vol. 12, No. 5 ( 2022-05-04), p. 795-
    Abstract: Wire and arc additively manufactured (WAAM) parts and structures often present internal defects, such as gas pores, and cause irregularities in the manufacturing process. In order to describe and assess the effect of internal defects in fatigue design, this research study investigates the fatigue strength of wire arc additive manufactured structures covering the influence of imperfections, particularly gas pores. Single pass WAAM structures are manufactured using titanium alloy Ti-6Al-4V and round fatigue, tensile specimen are extracted. Tensile tests and uniaxial fatigue tests with a load stress ratio of R = 0.1 were carried out, whereby fatigue test results are used for further assessments. An extensive fractographic and metallographic fracture surface analysis is utilized to characterize and measure crack-initiating defects. As surface pores as well as bulk pores are detected, a stress intensity equivalent ∆Keqv transformation approach is presented in this study. Thereby, the defect size of the surface pore is transformed to an increased defect size, which is equivalent to a bulk pore. Subsequently, the fatigue strength assessment method by Tiryakioğlu, commonly used for casting processes, is applied. For this method, a cumulative Gumbel extreme value distribution is utilized to statistically describe the defect size. The fitted distribution with modified data reveals a better agreement with the experimental data than unmodified. Additionally, the validation of the model shows that the usage of the ∆K modified data demonstrates better results, with a slight underestimation of up to about −7%, compared to unmodified data, with an overestimation of up to about 14%, comparing the number of load cycles until failure. Hence, the presented approach applying a stress intensity equivalent transformation of surface to bulk pores facilitates a sound fatigue strength assessment of WAAM Ti-6Al-4V structures.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662252-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Materials, MDPI AG, Vol. 16, No. 18 ( 2023-09-05), p. 6083-
    Abstract: Additive manufacturing (AM) techniques, such as wire arc additive manufacturing (WAAM), offer unique advantages in producing large, complex structures with reduced lead time and material waste. However, their application in fatigue-critical applications requires a thorough understanding of the material properties and behavior. Due to the layered nature of the manufacturing process, WAAM structures have different microstructures and mechanical properties compared to their substrate counterparts. This study investigated the mechanical behavior and fatigue performance of Ti-6Al-4V fabricated using WAAM compared to the substrate material. Tensile and low-cycle fatigue (LCF) tests were conducted on both materials, and the microstructure was analyzed using optical microscopy and scanning electron microscopy (SEM). The results showed that the WAAM material has a coarser and more heterogeneous grain structure, an increased amount of defects, and lower ultimate tensile strength and smaller elongation at fracture. Furthermore, strain-controlled LCF tests revealed a lower fatigue strength of the WAAM material compared to the substrate, with crack initiation occurring at pores in the specimen rather than microstructural features. Experimental data were used to fit the Ramberg–Osgood model for cyclic deformation behavior and the Manson–Coffin–Basquin model for strain-life curves. The fitted models were subsequently used to compare the two material conditions with other AM processes. In general, the quasi-static properties of WAAM material were found to be lower than those of powder-based processes like selective laser melting or electron beam melting due to smaller cooling rates within the WAAM process. Finally, two simplified estimation models for the strain-life relationship were compared to the experimentally fitted Manson–Coffin–Basquin parameters. The results showed that the simple “universal material law” is applicable and can be used for a quick and simple estimation of the material behavior in cyclic loading conditions. Overall, this study highlights the importance of understanding the mechanical behavior and fatigue performance of WAAM structures compared to their substrate counterparts, as well as the need for further research to improve the understanding of the effects of WAAM process parameters on the mechanical properties and fatigue performance of the fabricated structures.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  Machines Vol. 7, No. 1 ( 2019-01-02), p. 1-
    In: Machines, MDPI AG, Vol. 7, No. 1 ( 2019-01-02), p. 1-
    Abstract: This paper presents a numerical simulation chain covering induction hardening (IH), superimposed stroke peening (StrP) as mechanical post-treatment, and a final fatigue assessment considering local material properties. Focusing on a notched round specimen as representative for engineering components, firstly, the electro-magnetic-thermal simulation of the inductive heating is performed with the software Comsol®. Secondly, the thermo-metallurgical-mechanical analysis of the hardening process is conducted by means of a user-defined interface, utilizing the software Sysweld®. Thirdly, mechanical post-treatment is numerically simulated by Abaqus®. Finally, a strain-based approach considering the evaluated local material properties is applied, which reveals sound accordance to the fatigue tests results, exhibiting a minor conservative deviation of only up to two per cent, which validates the applicability of the presented numerical fatigue approach.
    Type of Medium: Online Resource
    ISSN: 2075-1702
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2704328-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Metals, MDPI AG, Vol. 8, No. 12 ( 2018-12-06), p. 1033-
    Abstract: This paper contributes to the effect of elevated temperature on the fatigue strength of common aluminum cast alloys EN AC-46200 and EN AC-45500. The examination covers both static as well as cyclic fatigue investigations to study the damage mechanism of the as-cast and post-heat-treated alloys. The investigated fracture surfaces suggest a change in crack origin at elevated temperature of 150 ∘ C. At room temperature, most fatigue tests reveal shrinkage-based micro pores as their crack initiation, whereas large slipping areas occur at elevated temperature. Finally, a modified a r e a -based fatigue strength model for elevated temperatures is proposed. The original a r e a model was developed by Murakami and uses the square root of the projected area of fatigue fracture-initiating defects to correlate with the fatigue strength at room temperature. The adopted concept reveals a proper fit for the fatigue assessment of cast Al-Si materials at elevated temperatures; in detail, the slope of the original model according to Murakami should be decreased at higher temperatures as the spatial extent of casting imperfections becomes less dominant at elevated temperatures. This goes along with the increased long crack threshold at higher operating temperature conditions.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2662252-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages