Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • German  (2)
Type of Publication
Consortium
Language
  • German  (2)
  • 1
    UID:
    (DE-101)1291561781
    Format: Online-Ressource
    Content: Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site‐selection biases influence estimates of biodiversity change is largely unknown. Site‐selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site‐selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site‐selection bias. We used a simple spatially resolved, individual‐based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site‐selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site‐selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site‐selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site‐selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site‐selection bias, we recommend use of systematic site‐selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site‐selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.
    In: In: EPIC3Conservation Biology, WILEY-BLACKWELL PUBLISHING, ISSN: 0888-8892
    In: Datenlieferant: Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    (DE-101)1291473688
    Format: Online-Ressource
    Content: Global concern about human impact on biological diversity has triggered an intense research agenda on drivers and consequences of biodiversity change in parallel with international policy seeking to conserve biodiversity and associated ecosystem functions. Quantifying the trends in biodiversity is far from trivial, however, as recently documented by meta-analyses, which report little if any net change in local species richness through time. Here, we summarise several limitations of species richness as a metric of biodiversity change and show that the expectation of directional species richness trends under changing conditions is invalid. Instead, we illustrate how a set of species turnover indices provide more information content regarding temporal trends in biodiversity, as they reflect how dominance and identity shift in communities over time. We apply these metrics to three monitoring datasets representing different ecosystem types. In all datasets, nearly complete species turnover occurred, but this was disconnected from any species richness trends. Instead, turnover was strongly influenced by changes in species presence (identities) and dominance (abundances). We further show that these metrics can detect phases of strong compositional shifts in monitoring data and thus identify a different aspect of biodiversity change decoupled from species richness. Synthesis and applications: Temporal trends in species richness are insufficient to capture key changes in biodiversity in changing environments. In fact, reductions in environmental quality can lead to transient increases in species richness if immigration or extinction has different temporal dynamics. Thus, biodiversity monitoring programmes need to go beyond analyses of trends in richness in favour of more meaningful assessments of biodiversity change.
    In: In: EPIC3Journal of Applied Ecology, WILEY-BLACKWELL PUBLISHING, pp. 1-16, ISSN: 0021-8901
    In: Datenlieferant: Alfred Wegener Institute for Polar- and Marine Research (AWI): ePIC (electronic Publication Information Center)
    Language: German
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages