Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    SAGE Publications ; 2018
    In:  The Holocene Vol. 28, No. 12 ( 2018-12), p. 1855-1869
    In: The Holocene, SAGE Publications, Vol. 28, No. 12 ( 2018-12), p. 1855-1869
    Abstract: Subarctic permafrost peatlands are important soil organic carbon pools, and improved knowledge about peat properties and peatland sensitivity to past climate change is essential when predicting future response to a warmer climate and associated feedback mechanisms. In this study, Holocene peatland development and permafrost dynamics of four subarctic peat plateaus in Finnmark, northern Norway have been investigated through detailed analyses of plant macrofossils and geochemical properties. Peatland inception occurred around 9800 cal. yr BP and 9200 cal. yr BP at the two continental sites Suossjavri and Iskoras. Younger basal peat ages were found at the two coastal locations Lakselv and Karlebotn, at least partly caused by the time lag between deglaciation and emergence of land by isostatic uplift. Here, peatland development started around 6150 cal. yr BP and 5150 cal. yr BP, respectively. All four peatlands developed as wet fens throughout most of the Holocene. Permafrost aggradation, causing frost heave and a shift in the vegetation assemblage from wet fen to dry bog species, probably did not occur until during the last millennium, ca. 950 cal. yr BP in Karlebotn and ca. 800 cal. yr BP in Iskoras, and before ca. 150 cal. yr BP in Lakselv and ca. 100 cal. yr BP in Suossjavri. In Karlebotn, there are indications of a possible earlier permafrost phase around 2200 cal. yr BP due to climatic cooling at the late Subboreal to early Subatlantic transition. The mean long-term Holocene carbon accumulation rate at all four sites was 12.3 ± 4.1 gC m −2 yr −1 (±SD) and the mean soil organic carbon storage was 97 ± 46 kgC m −2 .
    Type of Medium: Online Resource
    ISSN: 0959-6836 , 1477-0911
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2018
    detail.hit.zdb_id: 2027956-5
    SSG: 14
    SSG: 3,4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Geophysical Research: Biogeosciences, American Geophysical Union (AGU), Vol. 129, No. 3 ( 2024-03)
    Abstract: Rapid warming of northern permafrost region threatens ecosystems, soil carbon stocks, and global climate targets Long‐term observations show importance of disturbance and cold season periods but are unable to detect spatiotemporal trends in C flux Combined modeling and syntheses show the permafrost region is a small terrestrial CO 2 sink with large spatial variability and net CH 4 source
    Type of Medium: Online Resource
    ISSN: 2169-8953 , 2169-8961
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2024
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Arctic Science, Canadian Science Publishing, Vol. 8, No. 1 ( 2022-03-01), p. 153-182
    Abstract: Climate change is destabilizing permafrost landscapes, affecting infrastructure, ecosystems, and human livelihoods. The rate of permafrost thaw is controlled by surface and subsurface properties and processes, all of which are potentially linked with each other. However, no standardized protocol exists for measuring permafrost thaw and related processes and properties in a linked manner. The permafrost thaw action group of the Terrestrial Multidisciplinary distributed Observatories for the Study of the Arctic Connections (T-MOSAiC) project has developed a protocol, for use by non-specialist scientists and technicians, citizen scientists, and indigenous groups, to collect standardized metadata and data on permafrost thaw. The protocol introduced here addresses the need to jointly measure permafrost thaw and the associated surface and subsurface environmental conditions. The parameters measured along transects include: snow depth, thaw depth, vegetation height, soil texture, and water level. The metadata collection includes data on timing of data collection, geographical coordinates, land surface characteristics (vegetation, ground surface, water conditions), as well as photographs. Our hope is that this openly available dataset will also be highly valuable for validation and parameterization of numerical and conceptual models, and thus to the broad community represented by the T-MOSAiC project.
    Type of Medium: Online Resource
    ISSN: 2368-7460 , 2368-7460
    Language: English
    Publisher: Canadian Science Publishing
    Publication Date: 2022
    detail.hit.zdb_id: 3037411-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Earth Science, Frontiers Media SA, Vol. 9 ( 2021-11-11)
    Abstract: Mongolia is one of the most sensitive regions to climate change, located in the transition of several natural and permafrost zones. Long-term trends in air freezing and thawing indices can therefore enhance our understanding of climate change. This study focuses on changes of the spatiotemporal patterns in air freezing and thawing indices over Mongolia from 1960 to 2020, using observations at 30 meteorological stations. Our results shows that the freezing index ranges from −945.5 to −4,793.6°C day, while the thawing index ranges from 1,164.4 to 4,021.3°C day over Mongolia, and their spatial patterns clearly link to the latitude and altitude. During the study period, the trend in the thawing index (14.4°C-day per year) was larger than the trend in the freezing index (up to −10.1°C-day per year), which results in the net increase of air temperature by 2.4°C across Mongolia. Overall, the increase in the thawing index was larger in the low latitudes and altitudes (e.g., the Gobi-desert, steppes, the Great lake depression and major river valleys) than in high latitudes and altitudes (mountain regions), while it was the opposite for the freezing index. The highest values for both thawing index and freezing index (i.e. the least negative values) have occurred during the last 2 decades. As the trends in the freezing and thawing indices and mean annual air temperature confirm intensive climate warming, increased permafrost degradation and shallower seasonally frozen ground are expected throughout Mongolia.
    Type of Medium: Online Resource
    ISSN: 2296-6463
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2741235-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2017
    In:  Journal of Hydrometeorology Vol. 18, No. 1 ( 2017-01-01), p. 49-63
    In: Journal of Hydrometeorology, American Meteorological Society, Vol. 18, No. 1 ( 2017-01-01), p. 49-63
    Abstract: A mosaic approach to represent subgrid snow variation in a coupled atmosphere–land surface model (WRF–Noah) is introduced and tested. Solid precipitation is scaled in 10 subgrid tiles based on precalculated snow distributions, giving a consistent, explicit representation of variable snow cover and snow depth on subgrid scales. The method is tested in the Weather Research and Forecasting (WRF) Model for southern Norway at 3-km grid spacing, using the subgrid tiling for areas above the tree line. At a validation site in Finse, the modeled transition time from full snow cover to snow-free ground is increased from a few days with the default snow cover fraction formulation to more than 2 months with the tiling approach, which agrees with in situ observations from both digital camera images and surface temperature loggers. This in turn reduces a cold bias at this site by more than 2°C during the first half of July, with the noontime bias reduced from −5° to −1°C. The improved representation of subgrid snow variation also reduces a cold bias found in the reference simulation on regional scales by up to 0.8°C and increases surface energy fluxes (in particular the latent heat flux), and it resulted in up to 50% increase in monthly (June) precipitation in some of the most affected areas. By simulating individual soil properties for each tile, this approach also accounts for a number of secondary effects of uneven snow distribution resulting in different energy and moisture fluxes in different tiles also after the snow has disappeared.
    Type of Medium: Online Resource
    ISSN: 1525-755X , 1525-7541
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 2042176-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Scientific Reports Vol. 8, No. 1 ( 2018-01-25)
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 8, No. 1 ( 2018-01-25)
    Abstract: Temperature changes in the Arctic have notable impacts on ecosystem structure and functioning, on soil carbon dynamics, and on the stability of permafrost, thus affecting ecosystem functions and putting man-built infrastructure at risk. Future warming in the Arctic could accelerate important feedbacks in permafrost degradation processes. Therefore it is important to map vulnerable areas most likely to be impacted by temperature changes and at higher risk of degradation, particularly near communities, to assist adaptation to climate change. Currently, these areas are poorly assessed, especially in Greenland. Here we quantify trends in satellite-derived land surface temperatures and modelled air temperatures, validated against observations, across the entire ice-free Greenland. Focus is on the past 30 years, to characterize significant changes and potentially vulnerable regions at a 1 km resolution. We show that recent temperature trends in Greenland vary significantly between seasons and regions and that data with resolutions down to single km 2 are critical to map temperature changes for guidance of further local studies and decision-making. Only a fraction of the ice-free Greenland seems vulnerable due to warming when analyzing year 2001–2015, but the most pronounced changes are found in the most populated parts of Greenland. As Greenland represents important gradients of north/south coast/inland/distance to large ice sheets, the conclusions are also relevant in an upscaling to greater Arctic areas.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2615211-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Geophysical Research: Earth Surface, American Geophysical Union (AGU), Vol. 125, No. 10 ( 2020-10)
    Abstract: Thermokarst lake taliks may refreeze when inundated with seawater, even under floating ice conditions Salt rejection from lagoon ice formation and seasonal isolation from the sea cause hypersaline conditions below the lagoon's ice cover Subaquatic ice‐bearing permafrost formation suggests that not all subsea ice‐bearing permafrost is former terrestrial permafrost
    Type of Medium: Online Resource
    ISSN: 2169-9003 , 2169-9011
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2020
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2138320-0
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2019
    In:  Journal of Geophysical Research: Earth Surface Vol. 124, No. 4 ( 2019-04), p. 920-937
    In: Journal of Geophysical Research: Earth Surface, American Geophysical Union (AGU), Vol. 124, No. 4 ( 2019-04), p. 920-937
    Abstract: The thawing of ice‐bearing subsea permafrost was modeled by coupling heat and salt diffusion The boundary conditions reflect sea ice dynamics during the transition from terrestrial to marine permafrost The modeled ice‐bearing permafrost depths were validated with geoelectric surveys
    Type of Medium: Online Resource
    ISSN: 2169-9003 , 2169-9011
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2138320-0
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Environmental Research Letters, IOP Publishing, Vol. 16, No. 8 ( 2021-08-01), p. 084045-
    Abstract: Boreal forests efficiently insulate underlying permafrost. The magnitude of this insulation effect is dependent on forest density and composition. A change therein modifies the energy and water fluxes within and below the canopy. The direct influence of climatic change on forests and the indirect effect through a change in permafrost dynamics lead to extensive ecosystem shifts such as a change in composition or density, which will, in turn, affect permafrost persistence. We derive future scenarios of forest density and plant functional type composition by analyzing future projections provided by the dynamic global vegetation model (LPJ-GUESS) under global warming scenarios. We apply a detailed permafrost-multilayer canopy model to study the spatial impact-variability of simulated future scenarios of forest densities and compositions for study sites throughout eastern Siberia. Our results show that a change in forest density has a clear effect on the ground surface temperatures (GST) and the maximum active layer thickness (ALT) at all sites, but the direction depends on local climate conditions. At two sites, higher forest density leads to a significant decrease in GSTs in the snow-free period, while leading to an increase at the warmest site. Complete forest loss leads to a deepening of the ALT up to 0.33 m and higher GSTs of over 8  ∘ C independently of local climatic conditions. Forest loss can induce both, active layer wetting up to four times or drying by 50%, depending on precipitation and soil type. Deciduous-dominated canopies reveal lower GSTs compared to evergreen stands, which will play an important factor in the spreading of evergreen taxa and permafrost persistence under warming conditions. Our study highlights that changing density and composition will significantly modify the thermal and hydrological state of the underlying permafrost. The induced soil changes will likely affect key forest functions such as the carbon pools and related feedback mechanisms such as swamping, droughts, fires, or forest loss.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 2255379-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Dnipro University of Technology ; 2021
    In:  Mining of Mineral Deposits Vol. 15, No. 3 ( 2021-09), p. 22-30
    In: Mining of Mineral Deposits, Dnipro University of Technology, Vol. 15, No. 3 ( 2021-09), p. 22-30
    Abstract: Purpose.In this paper we present and validate an analytical model of water inflow and rising level in a flooded mine and examine the model robustness and sensitivity to variations of input data considering the examples of three closed hard-coal mines in Germany. Methods. We used the analytical solution to a boundary value problem of radial ground water flow to the shaft, treated as a big well, and water balance relations for the series of successive stationary positions of a depression cone to simulate a mine water rebound in the mine taking into account vertical distribution of hydraulic conductivity, residual volume of underground workings, and natural pores. Findings. The modeling demonstrated very good agreement with the measured data for all the studied mines. The maximum relative deviation for the mine water level during the measurement period did not exceed 2.1%; the deviation for the inflow rate to a mine before its flooding did not exceed 0.8%. Sensitivity analysis revealed the higher significance of the residual working volume and hydraulic conductivity for mine water rebound in the case of thick overburden and the growing significance of the infiltration rate and the flooded area size in the case of lower overburden thickness. Originality.The developed analytical model allows realistic prediction of transient mine water rebound and inflow into a mine with layered heterogeneity of rocks, irregular form of the drained area, and with the inflow/outflow to a neighboring mine and the volume of voids as a distributed parameter without gridding the flow domain performed in numerical models. Practical implications.The study demonstrated the advantages of analytical modeling as a tool for preliminary evaluation and prediction of flooding indicators and parameters of mined out disturbed rocks. In case of uncertain input data, modeling can be considered as an attractive alternative to usually applied numerical methods of modeling ground and mine water flow.
    Type of Medium: Online Resource
    ISSN: 2415-3435 , 2415-3443
    URL: Issue
    Language: Unknown
    Publisher: Dnipro University of Technology
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages