Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geoarchaeology, Wiley, Vol. 30, No. 4 ( 2015-07), p. 369-378
    Abstract: Roman cisterns served as rainwater storage devices for centuries and are densely distributed in parts of northern Jordan. A major earthquake hit the region ca . A.D. 750 and in a short time many settlements were abandoned. As a consequence, most cisterns were not maintained, and they filled with sediments that today provide a postabandonment depositional record. In two field surveys, we mapped the locations of more than 100 cisterns in the Wadi Al‐Arab basin and selected two for detailed stratigraphic analysis that included 14 C and optically stimulated luminescence dating. Catchment basin area for each cistern was determined by differential GPS. Both cisterns filled with sediments after the great earthquake and consequent abandonment of the region. Calculated sediment volumes are translated to long‐term average sediment export rates of 2.6–6.6 t ha −1 a −1 , which are comparable to erosion and sediment yield rates from other studies within the Mediterranean region. Our pilot study suggests that this approach can be applied elsewhere to calculate long‐term sediment export rates on hill slopes containing relict cisterns.
    Type of Medium: Online Resource
    ISSN: 0883-6353 , 1520-6548
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2015
    detail.hit.zdb_id: 1479950-9
    SSG: 6,14
    SSG: 13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Earth Surface Processes and Landforms, Wiley
    Abstract: The complex interrelation between plants and geomorphic processes is described in the concept of biogeomorphic succession. While ecological research on succession and community assembly has transitioned towards functional approaches, studies on functional diversity in biogeomorphic settings, particularly in glacier forelands, remain limited. In this study, we investigated abundance of vascular plant species and functional traits in an alpine glacier foreland using data from 199 plots. Our objective was to unravel the development of functional diversity during biogeomorphic succession. Specifically, the study determined whether structural shifts in functional diversity are associated with stability thresholds related to plant cover, geomorphic influence, and examined trait spectra for stages of biogeomorphic succession. Our findings revealed a nonlinear trajectory of functional diversity along the plant cover gradient, marked by two distinct structural shifts at 30% and 74% cover, corresponding to established stability thresholds. Along the gradient of geomorphic influence, we observed an increase in functional diversity until 54% of the plot area was affected, beyond which functional diversity declined below the initial level. The analysis of community‐weighted means of traits across four stages of biogeomorphic succession determined by plant cover and absence and presence of geomorphic influence revealed significant differences in trait values. In the transition to the biogeomorphic stage, associated with the identified initial structural shift, there is a shift from a prevalence of above‐ground adaptation and reproductive traits, such as leaf longevity, structure, growth form and mixed reproductive strategies, to an increased dominance of competitor species and traits related to below‐ground structures, including root type and structures, as well as vegetative reproduction. Our results contribute to understanding the relationship between vegetation succession and geomorphic influence by linking them to plant functional traits. This study advances beyond traditional taxonomic investigations by emphasizing functional approaches to biogeomorphic succession. Moreover, the functional trait data used in this study, easily downloadable from a public repository, can serve as a valuable template for future research in (bio)geomorphology, along with the employed methodologies.
    Type of Medium: Online Resource
    ISSN: 0197-9337 , 1096-9837
    Language: English
    Publisher: Wiley
    Publication Date: 2024
    detail.hit.zdb_id: 1479188-2
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing in Ecology and Conservation, Wiley, Vol. 8, No. 1 ( 2022-02), p. 57-71
    Abstract: Non‐forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non‐forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low‐stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R 2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave‐one‐out cross‐validation of 3.9%. Biomass per‐unit‐of‐height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha −1 . Photogrammetric approaches could provide much‐needed information required to calibrate and validate the vegetation models and satellite‐derived biomass products that are essential to understand vulnerable and understudied non‐forested ecosystems around the globe.
    Type of Medium: Online Resource
    ISSN: 2056-3485 , 2056-3485
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2825232-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Earth Surface Processes and Landforms, Wiley, Vol. 44, No. 6 ( 2019-05), p. 1259-1273
    Abstract: Despite the importance of land cover on landscape hydrology and slope stability, the representation of land cover dynamics in physically based models and their associated ecohydrological effects on slope stability is rather scarce. In this study, we assess the impact of different levels of complexity in land cover parameterisation on the explanatory power of a dynamic and process‐based spatial slope stability model. Firstly, we present available and collected data sets and account for the stepwise parameterisation of the model. Secondly, we present approaches to simulate land cover: 1) a grassland landscape without forest coverage; 2) spatially static forest conditions, in which we assume limited knowledge about forest composition; 3) more detailed information of forested areas based on the computation of leaf area development and the implementation of vegetation‐related processes; 4) similar to the third approach but with the additional consideration of the spatial expansion and vertical growth of vegetation. Lastly, the model is calibrated based on meteorological data sets and groundwater measurements. The model results are quantitatively validated for two landslide‐triggering events that occurred in Western Austria. Predictive performances are estimated using the Area Under the receiver operating characteristic Curve (AUC). Our findings indicate that the performance of the slope stability model was strongly determined by model complexity and land cover parameterisation. The implementation of leaf area development and land cover dynamics further yield an acceptable predictive performance (AUC ~0.71‐0.75) and a better conservativeness of the predicted unstable areas (FoC ~0.71). The consideration of dynamic land cover expansion provided better performances than the solely consideration of leaf area development. The results of this study highlight that an increase of effort in the land cover parameterisation of a dynamic slope stability model can increase the explanatory power of the model. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.
    Type of Medium: Online Resource
    ISSN: 0197-9337 , 1096-9837
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1479188-2
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Earth Surface Processes and Landforms Vol. 46, No. 9 ( 2021-07), p. 1797-1808
    In: Earth Surface Processes and Landforms, Wiley, Vol. 46, No. 9 ( 2021-07), p. 1797-1808
    Abstract: Phytoliths are plant microfossils commonly used as qualitative archive markers in archaeological and paleoecological studies. Their potential uniqueness to the vegetation cover, robustness to weathering, and lack of chemical alteration along the transport paths make them potentially suitable tracers for quantitative erosion studies. In this pilot study, we explore the potential of phytoliths in a sediment fingerprinting study in the Ceguera catchment (28 km 2 ) in NE Spain. The phytolith concentrations and morphologies of four land cover classes (agricultural land, badland, forest, and shrubland) were analysed, and their contributions to four natural sediment mixture samples along the river course were modelled. Phytolith concentrations allowed us to discriminate sources sufficiently, albeit with limited sample size. The performance of the phytoliths as tracer was tested by reproducing the sources of artificial sediment mixture samples with satisfactory recall ratio. Results identified badlands to be the main contributor, with 84–96% of the sediment load to the sinks, followed by shrublands (median 5%) and agricultural lands (median 2%). These major findings can be reproduced by other conventional erosion studies from this area, indicating that phytoliths are suited to quantifying erosion patterns in mesoscale catchments.
    Type of Medium: Online Resource
    ISSN: 0197-9337 , 1096-9837
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479188-2
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Earth Surface Processes and Landforms, Wiley, Vol. 46, No. 10 ( 2021-08), p. 1941-1952
    Abstract: Proglacial slopes provide suitable conditions for observing the co‐development of abiotic and biotic systems. The frequency and magnitude of geomorphic processes and plant composition govern this interplay, which is described in the model of biogeomorphic succession. In high mountain environments, this model has only been tested in a limited number of studies. The study aimed to quantify small‐scale sediment transport via erosion plots along a plant cover gradient and to investigate the influence of sediment transport on plant communities. We aimed to generate quantitative data to test existing biogeomorphic models. Small‐scale biogeomorphic interactions were investigated on 30 test plots of 2 × 3 m size on proglacial slopes of the Gepatschferner (Kaunertal) in the Austrian Alps during the snow‐free summer months over three consecutive years. The experimental plots were established on slopes along a plant cover gradient. A detailed vegetation survey was carried out to capture biotic conditions, and specific sediment yield was measured at each plot. Species abundance and composition at each site reflected successional stages. Additional environmental parameters, such as terrain age, geomorphometry, grain size distribution, soil nutrients, and precipitation, were also included in the analyses. We observed two pronounced declines in geomorphic activity on plots with both above 30% and above 75% plant cover. Nonmetric multidimensional scaling showed distinct clusters of vegetation composition that mainly followed a successional gradient. Sites that were affected by high‐magnitude geomorphic events showed different environmental conditions and species communities. Quantified process rates and observed species composition support the concept of biogeomorphic succession. The findings help to narrow down a biogeomorphic feedback window.
    Type of Medium: Online Resource
    ISSN: 0197-9337 , 1096-9837
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479188-2
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages