Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6648 ( 2023-06-02)
    Abstract: As a widespread but comparatively young clade of six parapatric species, the baboons ( Papio sp.) exemplify a frequently observed pattern of mammalian diversity. In particular, they provide analogs for the population structure of the multibranched prehuman lineage that occupied a similar geographic range before the hegemony of “modern” humans, Homo sapiens . Despite phenotypic and genetic differences, interspecies hybridization has been described between baboons at several locations, and population relationships based on mitochondrial DNA (mtDNA) do not correspond with relationships based on phenotype. These previous studies captured the broad outlines of baboon population genetic structure and evolutionary history but necessarily used data that were limited in genomic and geographical coverage and therefore could not adequately document inter- and intrapopulation variation. In this study, we analyzed whole-genome sequences of 225 baboons representing all six species and 19 geographic sites, with 18 local populations represented by multiple individuals. RATIONALE Recent studies have identified several mammalian species groups in which genetically distinct lineages have hybridized to generate complex reticulate phylogenies. Baboons provide a valuable context for studying processes generating such population and phylogenetic complexity because extant parapatric species form hybrid zones in several regions of Africa, allowing for direct observation of ongoing introgression. Furthermore, prior studies of nuclear and mtDNA and phenotypic diversity have demonstrated gene flow among differentiated lineages but were unable to develop the detailed picture of process and history that is now possible using whole-genome sequences and modern computational methods. To address these questions, we designed a study that would provide a more fine-grained picture of recent and ancient genetic reticulation by comparing phenotypes and autosomal, X and Y chromosomal, and mtDNA sequences, along with polymorphic insertions of repetitive elements across multiple baboon populations. RESULTS Using deep whole-genome sequence data from 225 baboons representing multiple populations, we identified several previously unknown geographic sites of gene flow between genetically distinct populations. We report that yellow baboons ( P. cynocephalus ) from western Tanzania are the first nonhuman primate found to have received genetic input from three distinct lineages. We compared the ancestry shared among individuals, estimated separately from the X chromosome and autosomes, to distinguish shared ancestry due to ancestral population relationships from coancestry as a result of recent male-biased immigration and gene flow. This reveals directionality and sex bias of recent gene flow in several locations. Analyses of population differences within species quantified different degrees of interspecies introgression among populations with an essentially identical phenotype. CONCLUSION The population genetic structure and history of introgression among baboon lineages are even more complex than predicted from observed phenotypic diversity and prior studies of limited genetic data. Single populations can carry genetic contributions from more than two ancestral sources. Populations that appear homogeneous on the basis of observable phenotype can display different levels of interspecies introgression. The evolutionary dynamics and current structure of baboon population diversity indicate that other mammals displaying differentiated and geographically separate species may also have more-complex histories than anticipated. This may also be true for the morphologically defined hominin taxa from the past 4 million years. Ancient and recent admixture among baboons: Complex population substructure and reticulation revealed by whole-genome sequencing. Pie charts represent recent ancestry of East African populations, with species contributions colored as in the inset map. Patterns of mixed ancestry differ substantially, even among conspecific populations. This suggests a complex history of recurrent interpopulational gene flow, driven predominantly by male migration. Comparably complex admixture probably also occurred among early hominins.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Veterinary Medicine and Science, Wiley
    Abstract: The potential for the transfer of zoonotic diseases, including bacteria between human and non‐human primates (NHPs), is expected to rise. It is posited that NHPs that live in close contact with humans serve as sentinels and reservoirs for antibiotic‐resistant bacteria. Objectives The objective was to characterize the oral and rectal bacteria in Ghanaian NHPs and profile the antimicrobial susceptibility of the isolated bacteria. Methods Oral and rectal swabs were obtained from 40 immobilized wild and captive NHPs from 7 locations in Ghana. Standard bacteriological procedures were used in the isolation, preliminary identification, automated characterization and antimicrobial susceptibility test (AST) of bacteria using the Vitek 2 Compact system. Results Gram‐negative bacteria dominated isolates from the rectal swabs ( n  = 76, 85.4%), whereas Gram‐positive bacteria were more common in the oral swabs ( n  = 41, 82%). Staphylococcus haemolyticus ( n  = 7, 14%) was the most occurring bacterial species isolated from the oral swabs, whereas Escherichia coli ( n  = 32, 36%) dominated bacteria isolates from rectal swabs. Enterobacter spp. had the highest (39%) average phenotypic resistance to antimicrobials that were used for AST, whereas a trend of high resistance was recorded against norfloxacin, Ampicillin and Tetracycline in Gram‐negative bacteria. Similarly, among Gram‐positive bacteria, Staphylococcus spp. had the highest (25%) average phenotypic resistance to antimicrobials used for AST, and a trend of high resistance was recorded against penicillin G and oxacillin. Conclusions This study has established that apparently healthy NHPs that live in anthropized environments in Ghana harbour zoonotic and antimicrobial resistant bacteria.
    Type of Medium: Online Resource
    ISSN: 2053-1095 , 2053-1095
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2819409-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: EFSA Supporting Publications, Wiley, Vol. 20, No. 1 ( 2023-01)
    Type of Medium: Online Resource
    ISSN: 2397-8325 , 2397-8325
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2902120-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLOS Neglected Tropical Diseases, Public Library of Science (PLoS), Vol. 17, No. 9 ( 2023-9-13), p. e0011602-
    Abstract: Treponema pallidum subsp. pertenue ( TPE ) is the causative agent of human yaws. Yaws is currently reported in 13 endemic countries in Africa, southern Asia, and the Pacific region. During the mid-20th century, a first yaws eradication effort resulted in a global 95% drop in yaws prevalence. The lack of continued surveillance has led to the resurgence of yaws. The disease was believed to have no animal reservoirs, which supported the development of a currently ongoing second yaws eradication campaign. Concomitantly, genetic evidence started to show that TPE strains naturally infect nonhuman primates (NHPs) in sub-Saharan Africa. In our current study we tested hypothesis that NHP- and human-infecting TPE strains differ in the previously unknown parts of the genomes. Methodology/Principal findings In this study, we determined complete (finished) genomes of ten TPE isolates that originated from NHPs and compared them to TPE whole-genome sequences from human yaws patients. We performed an in-depth analysis of TPE genomes to determine if any consistent genomic differences are present between TPE genomes of human and NHP origin. We were able to resolve previously undetermined TPE chromosomal regions (sequencing gaps) that prevented us from making a conclusion regarding the sequence identity of TPE genomes from NHPs and humans. The comparison among finished genome sequences revealed no consistent differences between human and NHP TPE genomes. Conclusion/Significance Our data show that NHPs are infected with strains that are not only similar to the strains infecting humans but are genomically indistinguishable from them. Although interspecies transmission in NHPs is a rare event and evidence for current spillover events is missing, the existence of the yaws bacterium in NHPs is demonstrated. While the low risk of spillover supports the current yaws treatment campaign, it is of importance to continue yaws surveillance in areas where NHPs are naturally infected with TPE even if yaws is successfully eliminated in humans.
    Type of Medium: Online Resource
    ISSN: 1935-2735
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2023
    detail.hit.zdb_id: 2429704-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6648 ( 2023-06-02)
    Abstract: Millions of people have received genome and exome sequencing to date, a collective effort that has illuminated for the first time the vast catalog of small genetic differences that distinguish us as individuals within our species. However, the effects of most of these genetic variants remain unknown, limiting their clinical utility and actionability. New approaches that can accurately discern disease-causing from benign mutations and interpret genetic variants on a genome-wide scale would constitute a meaningful initial step towards realizing the potential of personalized genomic medicine. RATIONALE As a result of the short evolutionary distance between humans and nonhuman primates, our proteins share near-perfect amino acid sequence identity. Hence, the effects of a protein-altering mutation found in one species are likely to be concordant in the other species. By systematically cataloging common variants of nonhuman primates, we aimed to annotate these variants as being unlikely to cause human disease as they are tolerated by natural selection in a closely related species. Once collected, the resulting resource may be applied to infer the effects of unobserved variants across the genome using machine learning. RESULTS Following the strategy outlined above we obtained whole-genome sequencing data for 809 individuals from 233 primate species and cataloged 4.3 million common missense variants. We confirmed that human missense variants seen in at least one nonhuman primate species were annotated as benign in the ClinVar clinical variant database in 99% of cases. By contrast, common variants from mammals and vertebrates outside the primate lineage were substantially less likely to be benign in the ClinVar database (71 to 87% benign), restricting this strategy to nonhuman primates. Overall, we reclassified more than 4 million human missense variants of previously unknown consequence as likely benign, resulting in a greater than 50-fold increase in the number of annotated missense variants compared to existing clinical databases. To infer the pathogenicity of the remaining missense variants in the human genome, we constructed PrimateAI-3D, a semisupervised 3D-convolutional neural network that operates on voxelized protein structures. We trained PrimateAI-3D to separate common primate variants from matched control variants in 3D space as a semisupervised learning task. We evaluated the trained PrimateAI-3D model alongside 15 other published machine learning methods on their ability to distinguish between benign and pathogenic variants in six different clinical benchmarks and demonstrated that PrimateAI-3D outperformed all other classifiers in each of the tasks. CONCLUSION Our study addresses one of the key challenges in the variant interpretation field, namely, the lack of sufficient labeled data to effectively train large machine learning models. By generating the most comprehensive primate sequencing dataset to date and pairing this resource with a deep learning architecture that leverages 3D protein structures, we were able to achieve meaningful improvements in variant effect prediction across multiple clinical benchmarks. PrimateAI-3D, a deep learning model trained on millions of benign primate variants. Common primate variants generated from 233 primate species (left) were validated as benign (98.7%) in the human ClinVar database. Voxelized protein structures (middle) with benign primate variants (spheres) were used to train a 3D convolution neural network to predict variant pathogenicity based on regional enrichment or depletion of primate variants. The resulting model was validated in independent clinical cohorts, as illustrated by the correlation of PrimateAI-3D scores and blood cholesterol levels for UK Biobank individuals (right).
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6648 ( 2023-06-02), p. 906-913
    Abstract: The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  Veterinary Medicine and Science Vol. 9, No. 1 ( 2023-01), p. 507-512
    In: Veterinary Medicine and Science, Wiley, Vol. 9, No. 1 ( 2023-01), p. 507-512
    Abstract: Treponema pallidum ( TP ) is a spirochaete bacterium with subspecies that in humans cause syphilis (subsp. pallidum ), bejel (subsp. endemicum ) and yaws (subsp. pertenue ; TPE ). The latter is target for eradication which requires detailed information on yaws epidemiology. It has been shown that African nonhuman primates (NHPs) are infected with TPE strains that are closely related to the human infecting yaws bacterium. While human yaws infection is known to be endemic in Ghana, there is a paucity of information regarding TPE infection of Ghana's native NHPs. Objectives The objective was to perform a small‐scale cross‐sectional serological screening for antibodies against TPE in Ghanaian monkeys. Due to the reports of TPE ‐infected NHPs from neighbouring Côte d'Ivore, we hypothesised that monkeys in Ghana are infected with TPE and, therefore, are seropositive for antibodies against‐ Treponema . Methods We sampled blood from 37 NHPs representing four species: Erythrocebus patas (16/37) 43.2%, Papio anubis (15/37) 40.5%, Chlorocebus sabaeus (3/37) 8.1% and Cercopithecus mona (3/37) 8.1%. Samples were tested using the NHP validated treponemal test ESPLINE TP. Results All 37 animals were seronegative for yaws infection. Conclusions We cannot exclude yaws infection in NHPs in Ghana at this point. Our study, in combination with the absence of reports of clinically infected NHPs in a yaws endemic country is, however, supportive for the current thinking that interspecies infection with TPE is extremely rare. This is an important finding for the current ongoing yaws eradication campaign.
    Type of Medium: Online Resource
    ISSN: 2053-1095 , 2053-1095
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2819409-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Vol. 66, No. 6 ( 2023-06), p. 599-616
    In: Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, Springer Science and Business Media LLC, Vol. 66, No. 6 ( 2023-06), p. 599-616
    Abstract: The COVID-19 pandemic and the increasing occurrence of monkeypox (mpox) diseases outside Africa have illustrated the vulnerability of populations to zoonotic pathogens. In addition, other viral zoonotic pathogens have gained importance in recent years. This review article addresses six notifiable viral zoonotic pathogens as examples to highlight the need for the One Health approach in order to understand the epidemiology of the diseases and to derive recommendations for action by the public health service. The importance of environmental factors, reservoirs, and vectors is emphasized, the diseases in livestock and wildlife are analyzed, and the occurrence and frequency of diseases in the population are described. The pathogens selected here differ in their reservoirs and the role of vectors for transmission, the impact of infections on farm animals, and the disease patterns observed in humans. In addition to zoonotic pathogens that have been known in Germany for a long time or were introduced recently, pathogens whose zoonotic potential has only lately been shown are also considered. For the pathogens discussed here, there are still large knowledge gaps regarding the transmission routes. Future One Health-based studies must contribute to the further elucidation of their transmission routes and the development of prevention measures. The holistic approach does not necessarily include a focus on viral pathogens/diseases, but also includes the question of the interaction of viral, bacterial, and other pathogens, including antibiotic resistance and host microbiomes.
    Type of Medium: Online Resource
    ISSN: 1436-9990 , 1437-1588
    Language: German
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1470303-8
    SSG: 20,1
    SSG: 8,1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Molecular Biology and Evolution, Oxford University Press (OUP), Vol. 40, No. 12 ( 2023-12-01)
    Abstract: Understanding the drivers of speciation is fundamental in evolutionary biology, and recent studies highlight hybridization as an important evolutionary force. Using whole-genome sequencing data from 22 species of guenons (tribe Cercopithecini), one of the world's largest primate radiations, we show that rampant gene flow characterizes their evolutionary history and identify ancient hybridization across deeply divergent lineages that differ in ecology, morphology, and karyotypes. Some hybridization events resulted in mitochondrial introgression between distant lineages, likely facilitated by cointrogression of coadapted nuclear variants. Although the genomic landscapes of introgression were largely lineage specific, we found that genes with immune functions were overrepresented in introgressing regions, in line with adaptive introgression, whereas genes involved in pigmentation and morphology may contribute to reproductive isolation. In line with reports from other systems that hybridization might facilitate diversification, we find that some of the most species-rich guenon clades are of admixed origin. This study provides important insights into the prevalence, role, and outcomes of ancestral hybridization in a large mammalian radiation.
    Type of Medium: Online Resource
    ISSN: 0737-4038 , 1537-1719
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2024221-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages