Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • CSIRO Publishing  (2)
  • English  (2)
  • 1
    In: Soil Research, CSIRO Publishing, Vol. 57, No. 6 ( 2019), p. 657-
    Abstract: The gas transport parameters, diffusivity and air-filled porosity are crucial for soil aeration, microbial activity and greenhouse gas emission, and directly depend on soil structure. In this study, we analysed the effect of long-term tillage and irrigation practices on the surface structure of an arable soil in New Zealand. Our hypothesis was that topsoil structure would change under intensification of arable production, affecting gas exchange. Intact soil cores were collected from plots under intensive tillage (IT) and direct drill (DD), irrigated or rainfed. In total, 32 cores were scanned by X-ray computed tomography (CT) to derive the pore network & gt;30µm. The cores were then used to measure soil-gas diffusivity, air-permeability and air-filled porosity of pores close to the resolution of the X-ray CT scans, namely ≥30µm. The gas measurements allow the calculation of pore-network connectivity and tortuosity parameters, which were compared with the CT-derived structural characteristics. Long-term irrigation had little effect on any of the parameters analysed. Total porosity tended to be lower under IT than DD, whereas the CT-derived porosity was comparable. Both the CT-derived mean pore diameter (MPD) and other morphological parameters, as well as gas measurement-derived parameters, highlighted a less developed structure under IT. The differences in the functional pore-network structure were attributed to SOC depletion and the mechanical disturbance through IT. Significant correlations between CT-derived parameters and functional gas transport parameters such as tortuosity and MPD were found, which suggest that X-ray CT could be useful in the prediction of gas transport.
    Type of Medium: Online Resource
    ISSN: 1838-675X
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Soil Research, CSIRO Publishing, Vol. 57, No. 6 ( 2019), p. 642-
    Abstract: Mass transport in soil occurs through the soil pore network, which is highly influenced by pore structural parameters such as pore-size distribution, porosity, pore tortuosity, and coordination number. In this study, we visualised the networks of meso- and macro-pores (typical pore radius r ≥ 10 μm) using microfocus X-ray computed tomography (MFXCT) and evaluated pore structural parameters of two loamy soils from Japan and New Zealand packed at different degrees of compaction. The effect of compaction on pore structural parameters and relationships between pore structural parameters and measured mass transport parameters were examined. Results showed a clear influence of compaction on pore structural parameters, with the MFXCT-derived mean pore radii and pore tortuosities decreasing and the mean pore coordination number increasing with increasing dry bulk density. Especially, pores with r & gt; 80 µm became finer or were not well formed due to compaction. The MFXCT-derived pore structural parameters were not well correlated with the equivalent pore radii from measured water retention curves. However, volumetric surface areas and pore-network connectivity-tortuosity factors derived from MFXCT allowed a fair prediction of several important mass transport parameters such as saturated hydraulic conductivities, soil-gas diffusion coefficients, and soil-air permeabilities. Further studies are needed to link micro-pores with radii smaller than the X-ray CT resolution to meso- and macro-pores visualised by X-ray CT to improve the prediction of mass transport parameters in soil.
    Type of Medium: Online Resource
    ISSN: 1838-675X
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages