Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Rockefeller University Press ; 2008
    In:  The Journal of General Physiology Vol. 131, No. 4 ( 2008-04-01), p. 349-364
    In: The Journal of General Physiology, Rockefeller University Press, Vol. 131, No. 4 ( 2008-04-01), p. 349-364
    Abstract: An important focus in cell biology is understanding how different feedback mechanisms regulate G protein–coupled receptor systems. Toward this end we investigated the regulation of endogenous β2 adrenergic receptors (β2ARs) and phosphodiesterases (PDEs) by measuring cAMP signals in single HEK-293 cells. We monitored cAMP signals using genetically encoded cyclic nucleotide-gated (CNG) channels. This high resolution approach allowed us to make several observations. (a) Exposure of cells to 1 μM isoproterenol triggered transient increases in cAMP levels near the plasma membrane. Pretreatment of cells with 10 μM rolipram, a PDE4 inhibitor, prevented the decline in the isoproterenol-induced cAMP signals. (b) 1 μM isoproterenol triggered a sustained, twofold increase in phosphodiesterase type 4 (PDE4) activity. (c) The decline in isoproterenol-dependent cAMP levels was not significantly altered by including 20 nM PKI, a PKA inhibitor, or 3 μM 59-74E, a GRK inhibitor, in the pipette solution; however, the decline in the cAMP levels was prevented when both PKI and 59-74E were included in the pipette solution. (d) After an initial 5-min stimulation with isoproterenol and a 5-min washout, little or no recovery of the signal was observed during a second 5-min stimulation with isoproterenol. (e) The amplitude of the signal in response to the second isoproterenol stimulation was not altered when PKI was included in the pipette solution, but was significantly increased when 59-74E was included. Taken together, these data indicate that either GRK-mediated desensitization of β2ARs or PKA-mediated stimulation of PDE4 activity is sufficient to cause declines in cAMP signals. In addition, the data indicate that GRK-mediated desensitization is primarily responsible for a sustained suppression of β2AR signaling. To better understand the interplay between receptor desensitization and PDE4 activity in controlling cAMP signals, we developed a mathematical model of this system. Simulations of cAMP signals using this model are consistent with the experimental data and demonstrate the importance of receptor levels, receptor desensitization, basal adenylyl cyclase activity, and regulation of PDE activity in controlling cAMP signals, and hence, on the overall sensitivity of the system.
    Type of Medium: Online Resource
    ISSN: 1540-7748 , 0022-1295
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2008
    detail.hit.zdb_id: 1477246-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 216, No. 6 ( 2019-06-03), p. 1280-1290
    Abstract: How antibodies naturally acquired during Plasmodium falciparum infection provide clinical immunity to blood-stage malaria is unclear. We studied the function of natural killer (NK) cells in people living in a malaria-endemic region of Mali. Multi-parameter flow cytometry revealed a high proportion of adaptive NK cells, which are defined by the loss of transcription factor PLZF and Fc receptor γ-chain. Adaptive NK cells dominated antibody-dependent cellular cytotoxicity responses, and their frequency within total NK cells correlated with lower parasitemia and resistance to malaria. P. falciparum–infected RBCs induced NK cell degranulation after addition of plasma from malaria-resistant individuals. Malaria-susceptible subjects with the largest increase in PLZF-negative NK cells during the transmission season had improved odds of resistance during the subsequent season. Thus, antibody-dependent lysis of P. falciparum–infected RBCs by NK cells may be a mechanism of acquired immunity to malaria. Consideration of antibody-dependent NK cell responses to P. falciparum antigens is therefore warranted in the design of malaria vaccines.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2019
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Rockefeller University Press ; 2008
    In:  The Journal of Cell Biology Vol. 181, No. 2 ( 2008-04-21), p. i10-i10
    In: The Journal of Cell Biology, Rockefeller University Press, Vol. 181, No. 2 ( 2008-04-21), p. i10-i10
    Type of Medium: Online Resource
    ISSN: 0021-9525 , 1540-8140
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2008
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Rockefeller University Press ; 2021
    In:  Journal of Experimental Medicine Vol. 218, No. 10 ( 2021-10-04)
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 218, No. 10 ( 2021-10-04)
    Abstract: To egress from its erythrocyte host, the malaria parasite, Plasmodium falciparum, must destabilize the erythrocyte membrane by activating an erythrocyte tyrosine kinase. Because imatinib inhibits erythrocyte tyrosine kinases and because imatinib has a good safety profile, we elected to determine whether coadministration of imatinib with standard of care (SOC) might be both well tolerated and therapeutically efficacious in malaria patients. Patients with uncomplicated P. falciparum malaria from a region in Vietnam where one third of patients experience delayed parasite clearance (DPC; continued parasitemia after 3 d of therapy) were treated for 3 d with either the region’s SOC (40 mg dihydroartemisinin + 320 mg piperaquine/d) or imatinib (400 mg/d) + SOC. Imatinib + SOC–treated participants exhibited no increase in number or severity of adverse events, a significantly accelerated decline in parasite density and pyrexia, and no DPC. Surprisingly, these improvements were most pronounced in patients with the highest parasite density, where serious complications and death are most frequent. Imatinib therefore appears to improve SOC therapy, with no obvious drug-related toxicities.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2021
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages