Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Unknown  (2)
  • Geography  (2)
Type of Medium
Person/Organisation
Language
  • Unknown  (2)
Years
Subjects(RVK)
  • Geography  (2)
RVK
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2021
    In:  Monthly Weather Review Vol. 149, No. 11 ( 2021-11), p. 3851-3874
    In: Monthly Weather Review, American Meteorological Society, Vol. 149, No. 11 ( 2021-11), p. 3851-3874
    Abstract: In this first part of a two-part study, the three-dimensional structure of the inner-core boundary layer (BL) is investigated in a full-physics simulation of Hurricane Irma (2017). The BL structure is highlighted during periods of intensity change, with focus on features and mechanisms associated with storm decay. The azimuthal structure of the BL is shown to be linked to the vertical wind shear and storm motion. The BL inflow becomes more asymmetric under increased shear. As BL inflow asymmetry amplifies, asymmetries in the low-level primary circulation and thermodynamic structure develop. A mechanism is identified to explain the onset of pronounced structural asymmetries in coincidence with external forcing (e.g., through shear) that would amplify BL inflow along limited azimuth. The mechanism assumes enhanced advection of absolute angular momentum along the path of the amplified inflow (e.g., amplified downshear), which results in local spinup of the vortex and development of strong supergradient flow downwind and along the BL top. The associated agradient force results in the outward acceleration of air immediately above the BL inflow, affecting fields including divergence, vertical motion, entropy advection, and inertial stability. In this simulation, descending inflow in coincidence with amplified shear is identified as the conduit through which low-entropy air enters the inner-core BL, thereby hampering convection downwind and resulting in storm decay.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2021
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Monthly Weather Review Vol. 150, No. 8 ( 2022-08), p. 1915-1936
    In: Monthly Weather Review, American Meteorological Society, Vol. 150, No. 8 ( 2022-08), p. 1915-1936
    Abstract: Three-dimensional hurricane boundary layer (BL) structure is investigated during secondary eyewall formation, as portrayed in a high-resolution, full-physics simulation of Hurricane Earl (2010). This is the second part of a study on the evolution of BL structure during vortex decay. As in part 1 of this work, the BL’s azimuthal structure was linked to vertical wind shear and storm motion. Measures of shear magnitude and translational speed in Earl were comparable to Hurricane Irma (2017) in part 1, but the orientation of one vector relative to the other differed, which contributed to different structural evolutions between the two cases. Shear and storm motion influence the shape of low-level radial flow, which in turn influences patterns of spinup and spindown associated with the advection of absolute angular momentum M . Positive agradient forcing associated with the import of M in the inner core elicits dynamically restorative outflow near the BL top, which in this case was asymmetric and intense at times prior to eyewall replacement. These asymmetries associated with shear and storm motion provide an explanation for BL convergence and spinup at the BL top outside the radius of maximum wind (RMW), which affects inertial stability and agradient forcing outside the RMW in a feedback loop. The feedback process may have facilitated the development of a secondary wind maximum over approximately two days, which culminated in eyewall replacement. Significance Statement In this second part of a two-part study, a simulation of Hurricane Earl in 2010 is used to analyze the cylindrical structure of the lowest 2.5 km of the atmosphere, which include the boundary layer. Structure at times when Earl weakened prior to and during a secondary eyewall formation is of primary concern. During the secondary eyewall formation, wind and thermal fields had substantial azimuthal structure, which was linked to the state of the environment. It is found that the azimuthal structure could be important to how the secondary eyewall formed in this simulation. A discussion and motivation for further investigating the lower-atmospheric azimuthal structure of hurricanes in the context of storm intensity is provided.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages