feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 1 ( 2014-07-03), p. 42-48
    Abstract: Methylation analysis at ZAP-70 CpG+223 in CLL provides superior prognostic information vs IGHV status or CD38 or ZAP-70 expression. A pyrosequencing method for the feasible assessment of CpG+223 methylation in CLL samples is provided.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 29-30
    Abstract: The first three authors contributed equally. The last three authors share senior authorship. Background: Although there has been an increased recognition of the contribution of germline variants to development of myeloid neoplasms, only two large-scale case-control genome-wide association studies (GWASs) have been conducted to identify variants that predispose to AML. Importantly, these studies were dedicated to AML predisposition in general, without investigation of molecularly distinct AML subtypes. Thus, we performed the first dedicated meta-analysis combining the two GWASs to investigate predisposing variants to cytogenetic AML subsets characterized by recurrent translocations and inversions. Methods: Two sets of adult de novo AML patients treated on Alliance for Clinical Trials in Oncology (Alliance) protocols, and two sets of adult de novo AML patients reported to CIBMTR (2000-11) from DISCOVeRY-BMT cohorts were compared with four sets of population-matched non-leukemic individuals of European ancestry. Illumina Infinium arrays were used for genotyping. The haplotype reference consortium was used for imputation and comparisons were performed using SNPtest and METAL with fixed-effects, for CBF-AML (n=251, including t(8;21), n=115; inv(16), n=136) and AML with 11q23/KMT2A translocations (n=177). Blood or bone marrow samples from subsets of these patients and additional AML patients with other cytogenetic abnormalities were used for total transcriptome RNA sequencing with Illumina instruments. Results: Two risk loci reached genome-wide significance in AML patients with 11q23/KMT2A translocations (Fig 1A). The most significant single nucleotide polymorphism (SNP) in the 4q21.3 risk locus, rs17668899[A] (P = 2.32 x 10-8, odds ratio [OR] = 3.92 [2.43-6.32]) is in intron 6 of the AFF1 gene (also called AF4) (Fig 1B), within an enhancer that interacts with the AFF1 transcription start site (Fig 1C, left). KMT2A-translocated AML patients with the risk allele had higher blast expression of AFF1 compared to those homozygous for the non-risk allele, although the trend did not reach significance (Fig 1D). Notably, AFF1 encodes a subunit of the super-elongation-complex (SEC) that acts as Pol II-associated master regulator of global transcription elongation. AFF1 is a common translocation partner of KMT2A in patients with acute lymphoblastic leukemia with t(4;11)(q21;q23), and is required for KMT2A-mediated leukemogenesis. We observed significantly higher AFF1 expression in both KMT2A-translocated AML and cytogenetically normal (CN) AML compared to CBF-AML (Fig 1E). The suggested role of AFF1/SEC is consistent with recent studies showing an important role for DOT1L, H3K79 methylation, and transcriptional elongation in NPM1-mutant AML (the most common subtype of CN-AML). Outcome analysis showed higher expression of AFF1 associated with shorter disease-free (DFS) in patients & lt; 60 years treated on Alliance studies (hazard ratio [HR] = 1.36, P=0.04; Fig 1F). The second KMT2A-translocated AML risk locus was located at 22q13.31, and the most significant SNP was rs62231468[A] (P = 4.95 x 10-9, OR = 3.25). rs62231468 is immediately 5' of the LDOC1L gene (a retrotransposon GAG-related gene, also called RTL6), and analysis of expression quantitative trait loci (eQTL) showed association of rs62231468[A] with higher LDOC1L expression, consistent with its location in an active enhancer (Fig 1C, right). The association between rs62231468[A] and higher LDOC1L expression was validated in leukemic blast expression from a set of 449 AML patients of any cytogenetic subset (Fig 1G). Notably, higher LDOC1L expression was associated with shorter DFS and overall survival (OS) in Alliance patients & lt; 60 years (DFS, HR = 1.25, P=0.03; OS, HR = 1.46, P & lt;0.001; Fig 1H-I). Analysis of patients with CBF-AML identified rs71568004[C] as more common in CBF-AML patients compared to controls (P = 3.84 x 10-8 , OR = 3.05 [2.05-4.53] ). This SNP is ~50kb 5' of the MARCKS gene located at 6q21, but genomic context analysis did not reveal any clear associations with MARCKS expression. Conclusions: Our first assessment of risk alleles for cytogenetic subsets of AML identified two novel independent risk loci associated with 11q23/KMT2A-translocated AML, and one risk locus associated with CBF-AML. These data suggest an important, subtype-specific role for transcriptional elongation in AML and that functional studies of retro transposition elements should be undertaken in leukemogenesis. Figure Disclosures Walker: Karyopharm: Current Employment, Current equity holder in publicly-traded company; Vigeo Therapeutics: Consultancy. Powell:Rafael Pharmaceuticals: Consultancy, Other: Advisor, Research Funding; Jazz Pharmaceuticals: Consultancy, Other: Advisor, Research Funding; Genentech: Research Funding; Novartis: Research Funding; Pfizer: Research Funding. Kolitz:Pfizer: Membership on an entity's Board of Directors or advisory committees; Magellan: Membership on an entity's Board of Directors or advisory committees. Pasquini:Bristol Myers Squibb: Consultancy; BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Other; Novartis: Research Funding; Kite: Research Funding. McCarthy:Karyopharm: Consultancy, Honoraria; Magenta: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Genentech: Consultancy, Honoraria; Starton: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Juno Therapeutics, a Bristol-Myers Squibb Company: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board , Research Funding is to Roswell Park, Research Funding. Stone:AbbVie: Consultancy, Research Funding; Actinium: Consultancy; Agios: Consultancy, Research Funding; Argenx: Consultancy, Other: Data and safety monitoring board; Arog: Research Funding; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Consultancy; Biolinerx: Consultancy; Celgene: Consultancy, Other: Data and safety monitoring board; Jazz: Consultancy; Novartis: Consultancy, Research Funding; Otsuka: Consultancy; Pfizer: Consultancy; Trovagene: Consultancy; Takeda: Consultancy; Daiichi-Sankyo: Consultancy; Elevate: Consultancy; Gemoab: Consultancy; Janssen: Consultancy; Macrogenics: Consultancy; Hoffman LaRoche: Consultancy; Stemline: Consultancy; Syndax: Consultancy; Syntrix: Consultancy; Syros: Consultancy. Byrd:Trillium: Research Funding; Novartis: Research Funding; Kartos Therapeutics: Research Funding; Syndax: Research Funding; Vincera: Research Funding; Acerta Pharma: Research Funding; Janssen: Consultancy; Leukemia and Lymphoma Society: Other; Pharmacyclics LLC, an AbbVie Company, Gilead, TG Therapeutics, BeiGene: Research Funding; Pharmacyclics LLC, an AbbVie Company, Janssen, Novartis, Gilead, TG Therapeutics: Other; Pharmacyclics LLC, an AbbVie Company, Gilead, TG Therapeutics, Novartis, Janssen: Speakers Bureau. Eisfeld:Karyopharm: Current Employment, Current equity holder in publicly-traded company; Vigeo Therapeutics: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 30, No. 20 ( 2012-07-10), p. 2483-2491
    Abstract: Increased ZAP-70 expression predicts poor prognosis in chronic lymphocytic leukemia (CLL). Current methods for accurately measuring ZAP-70 expression are problematic, preventing widespread application of these tests in clinical decision making. We therefore used comprehensive DNA methylation profiling of the ZAP-70 regulatory region to identify sites important for transcriptional control. Patients and Methods High-resolution quantitative DNA methylation analysis of the entire ZAP-70 gene regulatory regions was conducted on 247 samples from patients with CLL from four independent clinical studies. Results Through this comprehensive analysis, we identified a small area in the 5′ regulatory region of ZAP-70 that showed large variability in methylation in CLL samples but was universally methylated in normal B cells. High correlation with mRNA and protein expression, as well as activity in promoter reporter assays, revealed that within this differentially methylated region, a single CpG dinucleotide and neighboring nucleotides are particularly important in ZAP-70 transcriptional regulation. Furthermore, by using clustering approaches, we identified a prognostic role for this site in four independent data sets of patients with CLL using time to treatment, progression-free survival, and overall survival as clinical end points. Conclusion Comprehensive quantitative DNA methylation analysis of the ZAP-70 gene in CLL identified important regions responsible for transcriptional regulation. In addition, loss of methylation at a specific single CpG dinucleotide in the ZAP-70 5′ regulatory sequence is a highly predictive and reproducible biomarker of poor prognosis in this disease. This work demonstrates the feasibility of using quantitative specific ZAP-70 methylation analysis as a relevant clinically applicable prognostic test in CLL.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2012
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 221-221
    Abstract: Background: AML is a highly aggressive hematologic malignancy. Patient (pt) outcomes are affected by disease-related factors including cytogenetic findings and gene mutations, as well as pt-related factors, such as age and race. Younger pts have superior survival: ~50% of pts diagnosed as AYAs (18-39 years) may be cured of their disease. However, the impact of race on the outcome and associated disease profiles in this pt population are unknown. Methods: We compared survival and molecular profiles of 655 Non-Hispanic Black and Non-Hispanic White (hereafter referred to as Black, n=89 and White, n=566) AYA AML pts treated on frontline Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology protocols based on standard intensity cytarabine/anthracycline induction therapy between 1986 and 2016. Three hundred ten pts were analyzed molecularly via targeted sequencing of 81 genes. Additionally, we performed integrated genomic profiling (whole-exome sequencing and transcriptome sequencing) and measured residual disease (MRD) in serial samples of 4 Black pts who relapsed with their disease. Results: A comparison of clinical characteristics of AYA AML pts by race revealed almost identical age and sex distribution, and we found no significant differences between clinical features at diagnosis. With regard to genetic profiles, 42% of White pts were cytogenetically normal, whereas only 18% of Black pts had cytogenetically normal AML (CN-AML; p & lt;0.001). The abnormal karyotypes in Black pts more often contained abnormalities associated with core-binding factor (CBF) AML (39% v 25%, p=0.01; Fig. 1A). White pts had more known pathogenic NPM1 variants (29% v 9%, p=0.01), whereas Black pts had a higher incidence of ZRSR2 pathogenic variants (9% v 0.4%, p=0.004) and tended to have pathogenic KRAS variants more often (12% v 5%, p=0.11; Fig. 1B). Black AYA AML pts had worse outcomes including a higher early death rate (ED, defined as death within 30 days of diagnosis; 11% v 2%, p & lt;0.001), a trend towards lower complete remission (CR) rate (73% v 82%, p=0.06) and a shorter overall survival (OS; median, 1.5 v 3.1 years [y], p=0.002). Notably, this survival disparity was almost exclusively driven by pts aged 18-29 y: Black pts had a higher ED rate (16% v 3%, p=0.002), a lower CR rate (66% v 83%, p=0.01) and shorter OS (median, 1.3 v 10.2 y, p & lt;0.001) but not disease-free survival (DFS; p=0.16) than White pts aged 18-29 y. In contrast, there were no significant differences in these outcome metrics between Black and White pts aged 30-39 y (Fig. 2). Among all pts consolidated with intensive chemotherapy (n=566), multivariable analysis revealed Black race as an independent prognosticator of shorter DFS (p=0.04) and OS (p & lt;0.001). These differences in OS were also significant when we included pts who received allogeneic transplantation in 1st CR (n=655; p & lt;0.001). 18-29 y old Black pts with any non-CBF AML had very poor OS compared to White pts (5-y rates, 12% v 45%, p & lt;0.001). CBF-AML pts aged 18-29 y tended to have an inferior OS compared with White pts (5-y rates, 41% v 44%, p=0.10). To gain insights into the genetic features of Black AYA AML pts at different stages of the disease, we performed integrated genomic profiling on paired leukemic samples from diagnosis and relapse of 4 Black AYA pts. In all pts, the original dominant leukemic clone persisted and was dominant at relapse (Fig. 3). This suggests that the leukemic clone persists during treatment with conventional cytotoxic chemotherapy. This observation was further supported by MRD detection of NPM1 mutations in NPM1-mutated pts at time of morphologic CR. Conclusion: Black AYA AML pts present with distinct molecular features, including very high frequencies of CBF AML, and low frequency of NPM1. Pts aged 18-29y account for the race-associated survival disparity, especially non-CBF pts who have dramatically poor survival. On the one hand, the lower CR rates combined with persistence of dominant clones at relapse suggest reduced response to induction chemotherapy, and suggests the need for different treatment intensities and/or modalities in this pt cohort. On the other hand, high early death rates are indicative of delay in diagnosis and care, including health inequities, calling for systematic changes particularly for this population. Figure 1 Figure 1. Disclosures Blachly: KITE: Consultancy, Honoraria; INNATE: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria. Mims: Leukemia and Lymphoma Society's Beat AML clinical study: Consultancy, Research Funding; Aptevo: Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Glycomemetics: Research Funding; Kartos Pharmaceuticals: Research Funding; Xencor: Research Funding; Genentech: Consultancy; Abbvie: Consultancy; BMS: Consultancy; Kura Oncology: Consultancy; Syndax Pharmaceuticals: Consultancy; BMS: Consultancy; Jazz Pharmaceuticals: Consultancy; Aptevo: Research Funding. Walker: Karyopharm Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Blum: Leukemia and Lymphoma Society: Research Funding; Syndax: Honoraria; AmerisourceBergen: Honoraria; Abbvie: Honoraria; Celyad Oncology: Research Funding; Nkarta: Research Funding; Forma Therapeutics: Research Funding; Xencor: Research Funding. Larson: Rafael Pharmaceuticals: Research Funding; Epizyme: Consultancy; Astellas: Consultancy, Research Funding; Gilead: Research Funding; CVS/Caremark: Consultancy; Takeda: Research Funding; Novartis: Research Funding; Cellectis: Research Funding. Stone: Onconova: Consultancy; Boston Pharmaceuticals: Consultancy; Innate: Consultancy; Jazz: Consultancy; Novartis: Consultancy, Research Funding; AbbVie: Consultancy; GlaxoSmithKline: Consultancy; Gemoab: Membership on an entity's Board of Directors or advisory committees; Foghorn Therapeutics: Consultancy; Janssen: Consultancy; Arog: Consultancy, Research Funding; Aprea: Consultancy; Elevate Bio: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Consultancy; BerGen Bio: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees; Actinium: Membership on an entity's Board of Directors or advisory committees; Syndax: Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy; Syntrix/ACI: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy; Agios: Consultancy, Research Funding; Macrogenics: Consultancy. Paskett: Pfizer: Research Funding; Merck: Research Funding. Byrd: Vincerx Pharmaceuticals: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Newave: Membership on an entity's Board of Directors or advisory committees; Novartis, Trillium, Astellas, AstraZeneca, Pharmacyclics, Syndax: Consultancy, Honoraria. Eisfeld: Karyopharm (spouse): Current Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 685-685
    Abstract: Background: AML is a disease affecting predominantly older patients (pts), but does occur across the entire age spectrum; younger adults [age & lt;60 years (y)] have better outcomes. Using 2 large datasets (from Germany and the US), we sought to identify whether mutational frequencies, cytogenetic aberrations or outcome measures would demonstrate unique patterns to independently assort populations by age. Methods: We analyzed the molecular profiles of 2,823 adult AML pts enrolled onto clinical frontline protocols of 2 large cooperative study groups from 2 continents [US, Cancer and Leukemia Group B (CALGB)/Alliance for Clinical Trials in Oncology (Alliance), n=1743; Germany, AML Cooperative Group [AMLCG], n=1080] between 1986 and 2016. Treatment of all pts included intensive induction therapy, whereas pts enrolled on CALGB/Alliance protocols precluded allogeneic transplantation in 1 st complete remission. Pts in both cohorts were profiled for molecular features via targeted sequencing platforms. Frequencies of mutations genes and selected cytogenetic findings were then calculated in both datasets for the group of pts aged 18-24 y and for older pts by 5-year intervals until the age of 74 y and for pts older than 75 y. We also analyzed survival outcomes of 1,669 AML pts younger than 60 y using the same age intervals up to age 59 y. Results: Our side-by-side analysis shows remarkable congruence of results between German and US pt populations. Selected AML-associated gene mutations (mutation frequency ≥4%) and recurrent cytogenetic abnormalities followed 3 basic distribution patterns across the age spectrum (Fig. 1A): group 1 with increasing frequency with increasing age [ASXL1, BCOR, IDH1/2, RUNX1, SRSF2, TET2, TP53; complex karyotype and cytogenetically normal AML (CN-AML)]; group 2 with decreasing frequency with increasing age (CEBPA, EZH2, FLT3-TKD, GATA2, KIT, KRAS, PTPN11, NRAS, WT1; inv(16), t(8;21) and 11q23/KMT2A rearrangements) and group 3 with non-linear frequency distribution, which included the 3 most common AML-associated gene mutations (NPM1, DNMT3A, FLT3-ITD), SF3B1 and mutations in the cohesin complex genes (RAD21, SMC1A, SMC3, STAG2) (Fig. 1A). Notably, within the first 2 distribution groups, there seem to be no obvious age that could serve as a cut point separating age groups that are markedly different with regard to their molecular patterns. Particularly, this includes an age group that is commonly used for pt cohort definitions such as pts aged 18-39 y referred to as adolescent and young adults (AYA) or even treatment decisions and eligibility (eg, ages 60 or 65 and older for consideration as elderly AML). With respect to pt outcomes, expectedly, there was almost linear shortening of overall survival (OS) as age increased (p & lt;.001; Fig. 1B, Table 1). Within the European LeukemiaNet (ELN) genetic-risk groups, there was also an age-associated shortening in OS rates (Table 1): in favorable and intermediate risk pts the 5y-OS declined over the age range (favorable risk pts; US, p=.002; GER, p & lt;.001; intermediate risk pts, US, p & lt;.001; GER, p=.009, Table 1). Adverse risk pts had less variability in survival outcome across age (US, p=.004; GER, p=.22). Thus, while ELN criteria risk stratifies each age group, age itself is an important qualifier with regards to OS within each ELN group given the wide survival range among the age group. Again, there were no distinct outcome changes at certain age groups, further supporting the consideration of age as a continuum in AML for both biology and risk stratification. Conclusions: To our knowledge, this is the first large scale depiction of mutational patterns in AML inclusive of the entire adult age spectrum. Our international study demonstrates that patterns of individual mutations based on age are remarkably consistent between countries, and defy assortment based on typical age conventions. Given the continuous distribution of either increasing or decreasing frequency of many mutations, there are distinctly different mutational profiles for the youngest pts compared with older pts, however choosing a precise cut-off, such as age 39 for AYA pts or 59 for consideration as "younger AML", does not seem to be supported by our analyses. This observation supports a more personalized approach that also considers molecular subgroups in clinical practice instead of the age rigidity set in many clinical trials. *shared first: M.C.,K.L.; #last: T.H.,AK.E. Figure 1 Figure 1. Disclosures Berdel: Philogen S.p.A.: Consultancy, Current equity holder in publicly-traded company, Honoraria, Membership on an entity's Board of Directors or advisory committees. Hiddemann: F. Hoffmann-La Roche: Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Research Funding. Blachly: KITE: Consultancy, Honoraria; INNATE: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; AstraZeneca: Consultancy, Honoraria. Mims: Glycomemetics: Research Funding; Daiichi Sankyo: Consultancy, Research Funding; Aptevo: Research Funding; Leukemia and Lymphoma Society's Beat AML clinical study: Consultancy, Research Funding; Xencor: Research Funding; Kartos Pharmaceuticals: Research Funding; Genentech: Consultancy; Abbvie: Consultancy; BMS: Consultancy; Kura Oncology: Consultancy; Syndax Pharmaceuticals: Consultancy; BMS: Consultancy; Jazz Pharmaceuticals: Consultancy; Aptevo: Research Funding. Walker: Karyopharm Therapeutics: Current Employment, Current holder of individual stocks in a privately-held company, Current holder of stock options in a privately-held company. Blum: Celyad Oncology: Research Funding; Forma Therapeutics: Research Funding; Xencor: Research Funding; Nkarta: Research Funding; Leukemia and Lymphoma Society: Research Funding; Abbvie: Honoraria; AmerisourceBergen: Honoraria; Syndax: Honoraria. Larson: Epizyme: Consultancy; Astellas: Consultancy, Research Funding; Gilead: Research Funding; CVS/Caremark: Consultancy; Takeda: Research Funding; Novartis: Research Funding; Rafael Pharmaceuticals: Research Funding; Cellectis: Research Funding. Stone: Syntrix/ACI: Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Research Funding; Astellas: Membership on an entity's Board of Directors or advisory committees; BerGen Bio: Membership on an entity's Board of Directors or advisory committees; Actinium: Membership on an entity's Board of Directors or advisory committees; Elevate Bio: Membership on an entity's Board of Directors or advisory committees; Syndax: Membership on an entity's Board of Directors or advisory committees; Onconova: Consultancy; Jazz: Consultancy; Janssen: Consultancy; Innate: Consultancy; GlaxoSmithKline: Consultancy; Gemoab: Membership on an entity's Board of Directors or advisory committees; Foghorn Therapeutics: Consultancy; Boston Pharmaceuticals: Consultancy; Bristol Myers Squibb: Consultancy; AbbVie: Consultancy; Arog: Consultancy, Research Funding; Aprea: Consultancy; Amgen: Membership on an entity's Board of Directors or advisory committees; Syros: Membership on an entity's Board of Directors or advisory committees; Takeda: Consultancy; Agios: Consultancy, Research Funding; Celgene: Consultancy; Macrogenics: Consultancy. Byrd: Vincerx Pharmaceuticals: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Novartis, Trillium, Astellas, AstraZeneca, Pharmacyclics, Syndax: Consultancy, Honoraria; Newave: Membership on an entity's Board of Directors or advisory committees. Metzeler: Jazz Pharmaceuticals: Consultancy; Novartis: Consultancy; Daiichi Sankyo: Honoraria; Astellas: Honoraria; AbbVie: Honoraria; Pfizer: Consultancy; Celgene/BMS: Consultancy, Honoraria, Research Funding. Eisfeld: Karyopharm (spouse): Current Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 936-939
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 21 ( 2019-11-01), p. 6524-6531
    Abstract: Uniparental disomy (UPD) is a way cancer cells duplicate a mutated gene, causing loss of heterozygosity (LOH). Patients with cytogenetically normal acute myeloid leukemia (CN-AML) do not have microscopically detectable chromosome abnormalities, but can harbor UPDs. We examined the prognostic significance of UPDs and frequency of LOH in patients with CN-AML. Experimental Design: We examined the frequency and prognostic significance of UPDs in a set of 425 adult patients with de novo CN-AML who were previously sequenced for 81 genes typically mutated in cancer. Associations of UPDs with outcome were analyzed in the 315 patients with CN-AML younger than 60 years. Results: We detected 127 UPDs in 109 patients. Most UPDs were large and typically encompassed all or most of the affected chromosome arm. The most common UPDs occurred on chromosome arms 13q (7.5% of patients), 6p (2.8%), and 11p (2.8%). Many UPDs significantly cooccurred with mutations in genes they encompassed, including 13q UPD with FLT3-internal tandem duplication (FLT3-ITD; P & lt; 0.001), and 11p UPD with WT1 mutations (P = 0.02). Among patients younger than 60 years, UPD of 11p was associated with longer overall survival (OS) and 13q UPD with shorter disease-free survival (DFS) and OS. In multivariable models that accounted for known prognostic markers, including FLT3-ITD and WT1 mutations, UPD of 13q maintained association with shorter DFS, and UPD of 11p maintained association with longer OS. Conclusions: LOH mediated by UPD is a recurrent feature of CN-AML. Detection of UPDs of 13q and 11p might be useful for genetic risk stratification of patients with CN-AML.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: SSRN Electronic Journal, Elsevier BV
    Type of Medium: Online Resource
    ISSN: 1556-5068
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood Advances, American Society of Hematology, Vol. 6, No. 19 ( 2022-10-11), p. 5570-5581
    Abstract: Survival of patients with acute myeloid leukemia (AML) is inversely associated with age, but the impact of race on outcomes of adolescent and young adult (AYA; range, 18-39 years) patients is unknown. We compared survival of 89 non-Hispanic Black and 566 non-Hispanic White AYA patients with AML treated on frontline Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology protocols. Samples of 327 patients (50 Black and 277 White) were analyzed via targeted sequencing. Integrated genomic profiling was performed on select longitudinal samples. Black patients had worse outcomes, especially those aged 18 to 29 years, who had a higher early death rate (16% vs 3%; P=.002), lower complete remission rate (66% vs 83%; P=.01), and decreased overall survival (OS; 5-year rates: 22% vs 51%; P & lt;.001) compared with White patients. Survival disparities persisted across cytogenetic groups: Black patients aged 18 to 29 years with non–core-binding factor (CBF)-AML had worse OS than White patients (5-year rates: 12% vs 44%; P & lt;.001), including patients with cytogenetically normal AML (13% vs 50%; P & lt;.003). Genetic features differed, including lower frequencies of normal karyotypes and NPM1 and biallelic CEBPA mutations, and higher frequencies of CBF rearrangements and ASXL1, BCOR, and KRAS mutations in Black patients. Integrated genomic analysis identified both known and novel somatic variants, and relative clonal stability at relapse. Reduced response rates to induction chemotherapy and leukemic clone persistence suggest a need for different treatment intensities and/or modalities in Black AYA patients with AML. Higher early death rates suggest a delay in diagnosis and treatment, calling for systematic changes to patient care.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 20-21
    Abstract: Acute myeloid leukemia (AML) is the most commonly diagnosed acute leukemia in adults. Despite newly approved treatment, AML still results in poor outcomes especially in older patients (pts). Cytogenetic abnormalities, gene mutations, and their combinations contribute to the pathogenesis and pt outcomes in AML. The PTPN11 gene encodes the phosphatase Shp2, which activates the RAS-MAPK pathway. Despite the relatively high frequency of PTPN11 mutations in AML, little is known about associations of PTPN11 mutations with other genomic features and their influence on outcomes of pts with standard 7+3 chemotherapy. In addition, primary resistance to targeted therapy, such as venetoclax and enasidenib, has been preliminarily noted in PTPN11+ pts. This study sought to determine the type and frequency of PTPN11 mutations as well as associations with clinical, cytogenetic, and genomic features and outcome in adult AML pts treated with 7+3 induction chemotherapy followed by consolidation chemotherapy on Cancer and Leukemia Group B/Alliance for Clinical Trials in Oncology trials. 1,725 newly diagnosed AML pts, defined by the European LeukemiaNet 2017 recommendations (excluding acute promyelocytic leukemia), were examined using targeted next generation sequencing analysis and centrally reviewed metaphase cytogenetics. Missense, nonsense, or frameshift variants not reported in the 1000 Genomes database, dbSNP137 or dbSNP142, were considered mutations. Fisher's exact test was used to determine mutation association and complete remission (CR) rates while continuous variables are from Wilcoxon rank sum test. The median follow-up was 9 years. We identified 140 pts (8.1%) with PTPN11 mutations with the majority (61%) located in the N-terminal SH2 domain (Figure 1). 98 younger ( & lt;60 years of age) and 42 older (≥60 years of age) pts were PTPN11+. Variant allele frequency (VAF) varied from 0.05 to 0.54, with 59 (42%) mutations having a VAF & gt; 0.3. NPM1 (61% vs 31%, P & lt; .001) and DNMT3A (R882 or other) mutations (39% vs 22%, P & lt; .001) were more likely to co-occur with PTPN11 mutations than wild-type (WT) PTPN11 (Figure 2). PTPN11 mutations were less common in FLT3-ITD pts than in those without (17% vs 25%, P = .07). PTPN11 mutations were more common in inv(3)(q21q26)/t(3;3)(q21;q26) pts (26%, P = .004) and were rare in pts with core-binding factor AML, inv(16)/t(16;16) (3%, P = .03) and t(8;21) (0%, P =.005). Clinical features of PTPN11+ pts were similar to those of WT pts except for elevated platelet counts (P & lt; .001) and more extramedullary involvement (P = .03). For all pts, there was no difference in CR rate, disease-free (DFS), overall (OS), and event-free (EFS) survival between PTPN11+ and PTPN11- pts. DFS of older PTPN11+ pts was shorter (3-y rates: 5% vs 15%, P = .04). Given that PTPN11 mutations often co-occur with NPM1 mutations, which are typically associated with favorable outcome (in the absence of a high FLT3-ITD ratio), we focused on the contribution of PTPN11 mutations to outcomes in the NPM1+/FLT3-WT subset. Compared with PTPN11-/NPM1+/FLT3-WT, PTPN11+ pts had a lower CR rate (38% vs 64%, P = .001) and shorter EFS (3-y rates: 10% vs 21%, P = .01), whereas there was no significant differences in OS (3-y rates: 23% vs 32%, P = .13) or DFS (3-y rates: 27% vs 33%, P = .75). When considering the role of PTPN11 mutations with WT NPM1, there was a reduction in survival in PTPN11+/NPM1- pts compared with PTPN11-/NPM1- pts. Younger PTPN11+/NPM1- pts had a lower CR rate (45% vs 71%, P = .002) and shorter OS (3-y rates: 30% vs 41%, P = .04), and EFS (3-y rates: 13% vs 27%, P = .008). Compared to older PTPN11-/NPM1-, older PTPN11+/NPM1- pts had a lower CR rate (18% vs 43%, P = .04) and shorter DFS (3-y rates: 0% vs 10%, P = .02) and EFS (3-y rates: 0% vs 4%, P = .02), whereas OS (3-y rates: 12% vs 10%, P = .58) had no significant difference. To our knowledge, this study is the largest cohort of PTPN11+ pts in adult AML and demonstrates specific mutational and cytogenetic associations. When considering PTPN11+ pts based on NPM1 mutation status, we showed that PTPN11 mutations associated with worse outcome in both NPM1+ and NPM1- AML pts when treated with intensive chemotherapy. Developing targeted treatments to this genomic group in AML represents a research priority. Support: U10CA180821, U10CA180882, U24CA196171, R35CA198183; https://acknowledgments.alliancefound.org; Clinicaltrials.gov Identifier: NCT00048958, NCT00899223, NCT00900224 Disclosures Mims: Leukemia and Lymphoma Society: Other: Senior Medical Director for Beat AML Study; Agios: Consultancy; Kura Oncology: Membership on an entity's Board of Directors or advisory committees; Syndax Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; Novartis: Speakers Bureau; Jazz Pharmaceuticals: Other: Data Safety Monitoring Board. Blachly:AbbVie, AstraZeneca, KITE Pharma: Consultancy. Stone:Takeda: Consultancy; Trovagene: Consultancy; Pfizer: Consultancy; Gemoab: Consultancy; Janssen: Consultancy; AbbVie: Consultancy, Research Funding; Actinium: Consultancy; Agios: Consultancy, Research Funding; Argenx: Consultancy, Other: Data and safety monitoring board; Arog: Research Funding; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Consultancy; Biolinerx: Consultancy; Celgene: Consultancy, Other: Data and safety monitoring board; Jazz: Consultancy; Novartis: Consultancy, Research Funding; Otsuka: Consultancy; Syntrix: Consultancy; Syros: Consultancy; Elevate: Consultancy; Syndax: Consultancy; Daiichi-Sankyo: Consultancy; Stemline: Consultancy; Macrogenics: Consultancy; Hoffman LaRoche: Consultancy. Wang:Bristol Meyers Squibb (Celgene): Consultancy; PTC Therapeutics: Consultancy; Macrogenics: Consultancy; Astellas: Consultancy; Jazz Pharmaceuticals: Consultancy; Stemline: Speakers Bureau; Genentech: Consultancy; Pfizer: Speakers Bureau; Abbvie: Consultancy. Kolitz:Pfizer: Membership on an entity's Board of Directors or advisory committees; Magellan: Membership on an entity's Board of Directors or advisory committees. Powell:Rafael Pharmaceuticals: Consultancy, Other: Advisor, Research Funding; Pfizer: Research Funding; Novartis: Research Funding; Genentech: Research Funding; Jazz Pharmaceuticals: Consultancy, Other: Advisor, Research Funding. Eisfeld:Vigeo Therapeutics: Consultancy; Karyopharm: Current Employment, Current equity holder in publicly-traded company. Byrd:Syndax: Research Funding; Vincera: Research Funding; Novartis: Research Funding; Kartos Therapeutics: Research Funding; Acerta Pharma: Research Funding; Trillium: Research Funding; Leukemia and Lymphoma Society: Other; Janssen: Consultancy; Pharmacyclics LLC, an AbbVie Company, Gilead, TG Therapeutics, BeiGene: Research Funding; Pharmacyclics LLC, an AbbVie Company, Gilead, TG Therapeutics, Novartis, Janssen: Speakers Bureau; Pharmacyclics LLC, an AbbVie Company, Janssen, Novartis, Gilead, TG Therapeutics: Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages