Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2000
    In:  The Journal of Immunology Vol. 164, No. 1 ( 2000-01-01), p. 256-264
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 164, No. 1 ( 2000-01-01), p. 256-264
    Abstract: T lymphocyte development requires a series of interactions between developing thymocytes and thymic epithelial (TE) cells. In this paper we show that TE cells in the developing thymus express Pref-1, a Delta-like cell-surface molecule. In fetal thymus organ cultures (FTOC), thymocyte cellularity was increased by the exogenous dimeric Pref-1 fusion protein, but was reduced by the soluble Pref-1 monomer or anti-Pref-1 Ab. Dimeric Pref-1 in FTOC also increased thymocyte expression of the HES-1 transcription factor. Thymocyte cellularity was increased in FTOC repopulated with immature thymocytes overexpressing HES-1, whereas FTOC from HES-1-deficient mice were hypocellular and unresponsive to the Pref-1 dimer. We detected no effects of either Pref-1 or HES-1 on developmental choice among thymocyte lineages. These results indicate that Pref-1 expressed by TE cells and HES-1 expressed by thymocytes are critically involved in supporting thymocyte cellularity.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2000
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Allergy and Clinical Immunology, Elsevier BV, Vol. 141, No. 1 ( 2018-01), p. 339-349.e11
    Type of Medium: Online Resource
    ISSN: 0091-6749
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 2006613-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Allergy and Clinical Immunology, Elsevier BV, Vol. 144, No. 5 ( 2019-11), p. 1438-1441.e12
    Type of Medium: Online Resource
    ISSN: 0091-6749
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2006613-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Inflammation and Regeneration, Springer Science and Business Media LLC, Vol. 43, No. 1 ( 2023-09-08)
    Abstract: Disease-specific induced pluripotent stem cells (iPSCs) are useful tools for pathological analysis and diagnosis of rare diseases. Given the limited available resources, banking such disease-derived iPSCs and promoting their widespread use would be a promising approach for untangling the mysteries of rare diseases. Herein, we comprehensively established iPSCs from patients with designated intractable diseases in Japan and evaluated their properties to enrich rare disease iPSC resources. Methods Patients with designated intractable diseases were recruited for the study and blood samples were collected after written informed consent was obtained from the patients or their guardians. From the obtained samples, iPSCs were established using the episomal method. The established iPSCs were deposited in a cell bank. Results We established 1,532 iPSC clones from 259 patients with 139 designated intractable diseases. The efficiency of iPSC establishment did not vary based on age and sex. Most iPSC clones originated from non-T and non-B hematopoietic cells. All iPSC clones expressed key transcription factors, OCT3/4 (range 0.27–1.51; mean 0.79) and NANOG (range 0.15–3.03; mean 1.00), relative to the reference 201B7 iPSC clone. Conclusions These newly established iPSCs are readily available to the researchers and can prove to be a useful resource for research on rare intractable diseases.
    Type of Medium: Online Resource
    ISSN: 1880-8190
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2411877-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2014
    In:  The Anatomical Record Vol. 297, No. 1 ( 2014-01), p. 111-120
    In: The Anatomical Record, Wiley, Vol. 297, No. 1 ( 2014-01), p. 111-120
    Abstract: Hematopoietic stem cells (HSCs) are defined by their capacity to self‐renew and to differentiate into all blood cell lineages while retaining robust capacity to regenerate hematopoiesis. Based on these characteristics, they are widely used for transplantation and gene therapy. However, the dose of HSCs available for use in treatments is limited. Therefore, extensive work has been undertaken to expand HSCs in culture and to produce HSCs from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) in order to improve the efficiency and outcome of HSC‐based therapies. Various surface markers have been characterized to improve the purification of HSCs and a huge number of cytokines and small‐molecule compounds have been screened for use in the expansion of HSCs. In addition, attempts to generate not only HSCs but also mature blood cells from ESCs and iPSCs are currently ongoing. This review covers recent approaches for the purification, expansion or production of human HSCs and provides insight into problems that need to be resolved. Anat Rec, 297:111–120. 2013. © 2013 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 1932-8486 , 1932-8494
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2273240-8
    detail.hit.zdb_id: 2109216-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2015
    In:  Blood Vol. 126, No. 23 ( 2015-12-03), p. 4115-4115
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 4115-4115
    Abstract: Down syndrome (DS) is characterized by the trisomy of chromosome 21 and complicated with multi-organ dysfunctions including the hematopoietic system. Among them, myeloproliferative disorder is known as a particular feature of the abnormality in hematopoiesis. At birth, about 10% of DS newborns show an extreme increase in blast cell number of peripheral blood and bone marrow, which is called transient abnormal myelopoiesis (TAM), because the blasts spontaneously disappear within 3 months. Morphologically, blast cells in TAM are similar to those typically found in acute megakaryoblastic leukemia (AMKL). Genetic analysis of blasts in TAM usually shows mutation in GATA1 gene. After spontaneous remission of TAM, 20 to 30% of TAM patients develop AMKL within several years. This type of AMKL is especially called DS related-AMKL (DS-AMKL). This leukemogenic transition from TAM to AMKL is considered to be a typical model of multi-step tumorigenesis. In this model, we deal with the initial part of TAM development in relationship with trisomy 21 and GATA1 mutation, especially focusing on how GATA1 mutation promotes TAM development and why hematopoietic progenitors with GATA1 mutation prevail during embryonic hematopoiesis only in the cells with trisomy 21. In order to address these unsolved issues, we have established a strictly controlled human induced pluripotent stem cell (iPSC) lines derived from DS patients with or without TAM. In this study, to recapitulate the phenotype of TAM and to specify the differentiation stage affected in hematopoietic cells in TAM patients, we differentiated established isogenic iPSC lines into megakaryocytes and erythrocytes in a step-wise manner. For this purpose, we employed two-dimensional differentiation system and compared the frequency of hematopoietic progenitor cells at various stages. For megakaryocytic lineage, we traced their differentiation as follows; hematopoietic progenitor cells committed to megakaryocytic lineage (day 9, CD34+CD41a+CD42b-CD235a-), megakaryoblasts (day 16, CD34-CD41a+CD42b-CD235a-) and promegakaryocytes (day 16, CD34-CD41a+CD42b+CD235a-). For erythrocytic differentiation, CD71+CD235a+ cells were defined as erythroid-committed hematopoietic cells. On nine days after the initiation of hematopoietic differentiation (day 9), the frequency of CD41a+CD235a- cells showed no significant differences irrespective of the status of chromosome 21 and GATA1 genotype. However, on the day 16, while the frequency of promegakaryocytes significantly decreased in GATA1-mutated iPSCs, megakaryoblasts, an earlier stage cells than promegakaryocytes, were increased in GATA1-mutated iPSCs. These data suggest that megakaryocytic maturation is arrested in GATA1-mutated iPSCs at the stage of megakaryoblasts. In GATA1-non-mutated clones, iPSCs with trisomy 21 yielded erythroid-committed CD71+CD235a+ cells more frequently than those with disomy 21. However, in GATA1-mutated clones, either trisomy 21 or disomy 21 iPSC clones never yielded the erythroid-committed cells. Taken these results together, we suspected that these in vitro phenotypes observed in both erythroid and megakaryocytic lineages were caused by the impairment of fate decision in their progenitor cells. In conclusion, we successfully recapitulated the phenotypes of TAM in vitro in regard to the abnormal differentiation into megakaryocytic and erythroid lineages. We noticed that the in vitro phenotype were associated with the GATA1 genotype and the ploidy of chromosome 21. Considering these results, analyses of the megakaryocytic and erythroid progenitor cells, such as CMP, MEP and Mk-p, are important to determine which stage of progenitors is responsible for the impairment of hematopoietic cell maturation and subsequent TAM development. Moreover, we believe that the recapitulated TAM model using iPSCs is helpful for the comprehensive understanding of pathogensis in TAM. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society of Hematology ; 2004
    In:  Blood Vol. 104, No. 11 ( 2004-11-16), p. 3225-3225
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 3225-3225
    Abstract: Hox genes are important regulators of normal hematopoiesis, where each step in differentiation from stem cell to differentiated progeny is associated with a particular Hox expression pattern. In addition, abnormal or disregulated Hox gene expression is often associated with leukaemia. In order to understand how Hox gene transcriptional networks govern normal and leukemic hematopoiesis, we have generated ES cell lines in which expression of representative Hox genes can be induced with doxycycline during in vitro differentiation. Previous work showed that the relatively 3′ Hox gene, HoxB4, promotes self-renewal of hematopoietic stem cells, as well as enabling a primitive to definitive hematopoietic transition. We report here the generation of an ES cell line with inducible expression of a relatively 5′ Hox gene, HoxA10. When expressed during the time at which the hematopoietic lineage first segregates from the endothelial lineage (day 4 of embryoid body (EB) differentiation), HoxA10 dramatically alters the immunophenotype of the EB hematopoietic compartment. Whereas 100% of hematopoietic colony forming cells (CFC) from a wild-type day 6 EB are double positive for c-kit and CD41, HoxA10 expression from day 4 to day 6 eliminates the CD41-positive population, while increasing the c-kit-positive population. CFCs were present at relatively normal numbers. In contrast, HoxB4 did not dramatically alter either the frequency or the immunophenotype of this early hematopoietic population, but significantly enhanced the frequency of mixed-lineage CFCs. We further compared the ability of these two Hox genes to promote the outgrowth of an undifferentiated hematopoietic population on OP9 from day 6 EBs. Whereas HoxB4 induced a rapid expansion of this population, concomitantly with ongoing myeloid commitment, HoxA10 induced a much slower outgrowth characterized by a prominent B-lymphoid component as well as myeloid and erythroid elements. We are currently assaying this HoxA10-induced hematopoietic population for adult repopulating activity.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2000
    In:  Blood Vol. 96, No. 12 ( 2000-12-01), p. 3757-3762
    In: Blood, American Society of Hematology, Vol. 96, No. 12 ( 2000-12-01), p. 3757-3762
    Abstract: Tie-2 receptor tyrosine kinase expressed in endothelial and hematopoietic cells is believed to play a role in both angiogenesis and hematopoiesis during development of the mouse embryo. This article addressed whether Tie-2 is expressed on fetal liver hematopoietic stem cells (HSCs) at day 14 of gestation. With the use of anti–Tie-2 monoclonal antibody, its expression was detected in approximately 7% of an HSC population of Kit-positive, Sca-1–positive, lineage-negative or -low, and AA4.1-positive (KSLA) cells. These Tie-2–positive KSLA (T+ KSLA) cells represent 0.01% to 0.02% of fetal liver cells. In vitro colony and in vivo competitive repopulation assays were performed for T+ KSLA cells and Tie-2–negative KSLA (T− KSLA) cells. In the presence of stem cell factor, interleukin-3, and erythropoietin, 80% of T+ KSLA cells formed colonies in vitro, compared with 40% of T− KSLA cells. Long-term multilineage repopulating cells were detected in T+ KSLA cells, but not in T− KSLA cells. An in vivo limiting dilution analysis revealed that at least 1 of 8 T+ KSLA cells were such repopulating cells. The successful secondary transplantation initiated with a limited number of T+ KSLA cells suggests that these cells have self-renewal potential. In addition, engraftment of T+ KSLA cells in conditioned newborn mice indicates that these HSCs can be adapted equally by the adult and newborn hematopoietic environments. The data suggest that T+ KSLA cells represent HSCs in the murine fetal liver.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2000
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Society of Hematology ; 2000
    In:  Blood Vol. 96, No. 12 ( 2000-12-01), p. 3757-3762
    In: Blood, American Society of Hematology, Vol. 96, No. 12 ( 2000-12-01), p. 3757-3762
    Abstract: Tie-2 receptor tyrosine kinase expressed in endothelial and hematopoietic cells is believed to play a role in both angiogenesis and hematopoiesis during development of the mouse embryo. This article addressed whether Tie-2 is expressed on fetal liver hematopoietic stem cells (HSCs) at day 14 of gestation. With the use of anti–Tie-2 monoclonal antibody, its expression was detected in approximately 7% of an HSC population of Kit-positive, Sca-1–positive, lineage-negative or -low, and AA4.1-positive (KSLA) cells. These Tie-2–positive KSLA (T+ KSLA) cells represent 0.01% to 0.02% of fetal liver cells. In vitro colony and in vivo competitive repopulation assays were performed for T+ KSLA cells and Tie-2–negative KSLA (T− KSLA) cells. In the presence of stem cell factor, interleukin-3, and erythropoietin, 80% of T+ KSLA cells formed colonies in vitro, compared with 40% of T− KSLA cells. Long-term multilineage repopulating cells were detected in T+ KSLA cells, but not in T− KSLA cells. An in vivo limiting dilution analysis revealed that at least 1 of 8 T+ KSLA cells were such repopulating cells. The successful secondary transplantation initiated with a limited number of T+ KSLA cells suggests that these cells have self-renewal potential. In addition, engraftment of T+ KSLA cells in conditioned newborn mice indicates that these HSCs can be adapted equally by the adult and newborn hematopoietic environments. The data suggest that T+ KSLA cells represent HSCs in the murine fetal liver.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2000
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 34, No. 11 ( 2014-06-01), p. 1976-1990
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2014
    detail.hit.zdb_id: 1474919-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages