Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (1)
  • MDPI AG  (1)
  • Albero Rojas, Claudia  (1)
Type of Medium
  • Online Resource  (1)
Publisher
  • MDPI AG  (1)
Person/Organisation
Language
Years
  • 1
    In: Coatings, MDPI AG, Vol. 13, No. 3 ( 2023-03-20), p. 656-
    Abstract: Potentiodynamic and potentiostatic polarization tests in the potential range between open circuit potential (OCP) − 0.1 V and OCP + 4 V were carried out in aluminate–phosphate electrolytes with an aluminate concentration of 0.2 mol/L and varying phosphates contents between 0 and 0.1 mol/L. The pH was adjusted between 11.5 and 12.0 due to phosphate and optional KOH addition. A high-strength, dual-phase steel, which is relevant for lightweight construction, served as the substrate material. The layer microstructure was investigated by optical and scanning electron microscopy. Energy-dispersive X-ray spectroscopy and Raman spectroscopy were used for element and phase analyses. We found that iron hydroxides or oxides are initially formed independently of the electrolyte composition at low potentials. At around 1 V vs. standard hydrogen electrode (SHE), the current density suddenly increases as a result of oxygen evolution, which causes a significant reduction in the pH value. Precipitation leads to the formation of porous layers with thicknesses of 10 µm to 20 µm. In the case of a pure aluminate solution, the layer mainly consists of amorphous alumina. When adding phosphate to the electrolyte, the layer additionally contains the hydrous phosphate evansite. At the highest phosphate content in the electrolyte, the highest P content and the most pronounced crack network were observed.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662314-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages