feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (3)
  • Wiley  (3)
  • Queiroz, Luciano P.  (3)
  • 1
    In: TAXON, Wiley, Vol. 71, No. 1 ( 2022-02), p. 178-198
    Abstract: The shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis , concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora.
    Type of Medium: Online Resource
    ISSN: 0040-0262 , 1996-8175
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2081189-5
    detail.hit.zdb_id: 204216-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Biogeography, Wiley, Vol. 47, No. 6 ( 2020-06), p. 1310-1321
    Abstract: To quantify evolutionary transitions between tropical evergreen rain forest and seasonally dry biomes, to test whether biome transitions affect lineage diversification and to examine the robustness of these results to methodological choices. Location The tropics. Time period The Cenozoic. Major taxa studied The plant subfamily Bombacoideae (Malvaceae). Methods We inferred ancestral biomes based on a fossil‐dated molecular phylogeny of 103 species (59% of the clade) and recorded the number of transitions among biomes using biogeographical stochastic mapping based on the dispersal‐extinction‐cladogenesis model. We then estimated diversification rates using state‐specific speciation and extinction rate ( SSE ) methods. Furthermore, we tested the sensitivity of the results to model choice, phylogenetic uncertainty, measurement error and biome definition. Results We found numerous transitions from evergreen rain forest to seasonally dry biomes, and fewer in the opposite direction. These results were robust to methodological choices. Biome type did not influence diversification rates, although this result was subject to uncertainty, especially related to model choice and biome definition. Main conclusions Our results contradict the idea of evolutionary biome conservatism in Bombacoideae, and support previous findings that evergreen rain forests serve as a source for the flora of seasonally dry biomes. The impact of biome classification and biome definition on the results suggest caution when using a biome concept for biogeographical reconstruction and diversification rate analysis.
    Type of Medium: Online Resource
    ISSN: 0305-0270 , 1365-2699
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020428-0
    detail.hit.zdb_id: 188963-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Ecology and Evolution, Wiley, Vol. 2, No. 2 ( 2012-02), p. 409-428
    Abstract: The tree species composition of seasonally dry tropical forests (SDTF) in north‐eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche‐based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal‐limited tree flora. These units should be given the status of eco‐regions to help driving the conservation policy regarding the protection of their biodiversity. 
    Type of Medium: Online Resource
    ISSN: 2045-7758 , 2045-7758
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 2635675-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages