Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genome Biology, Springer Science and Business Media LLC, Vol. 12, No. 9 ( 2011), p. R94-
    Type of Medium: Online Resource
    ISSN: 1465-6906
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 2040529-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 3164-3164
    Abstract: Exome-sequencing of matched tumor-normal sample pairs enables the identification of the full set of somatically acquired mutations that directly affect protein function in a given tumor. Inferring the functional significance of coding region mutations is relatively straightforward compared to mutations occurring in non-coding regions. Furthermore, exome sequencing enables sufficient sampling depth required for sensitive detection of somatic mutations in tumor samples. However, identification of novel driver mutations remains challenging due to the high levels of sequencing errors observed with current next generation sequencing technologies and due to passenger mutations which vastly out number driver mutations in any given tumor. Identification of novel driver mutations is especially challenging in the absence of cohort data. To identify driving somatic events in exome sequence data, we developed an analytical pipeline utilizing a combination of 3rd party tools for sequence read processing and mutation calling. This was coupled to an annotation framework that aids prioritization of driver mutation candidates for downstream validation experiments. The annotation framework integrates prior knowledge from reference databases on known cancer genes, sequence level evolutionary conservation and functional consequence predictions. Gene expression data from RNA-seq of the tumor sample can also be integrated in the annotations. To test this pipeline, we performed exome sequencing of a tumor-normal sample pair from an index patient diagnosed with T-cell derived large granular lymphocytic leukemia (T-LGL), which is a rare lymphoproliferative disease of previously unknown pathogenesis. The analysis pipeline identified a high-ranking candidate mutation in STAT3. Structural analysis indicated that the mutation resulted in a hydrophobic substitution at the SH2 dimerization interface, suggesting that the mutation stabilizes the active dimer form through increased hydrophobic interaction between monomers. Further validation experiments showed STAT3 SH2 hydrophobic substitutions to be recurrent in T-LGL and to result in constitutive STAT3 activation [1] . Application of the pipeline enabled identification of a novel class of oncogenic STAT3 SH2 domain mutations and established STAT3 as a key driver oncogene in T-LGL. Citation Format: Samuli Eldfors, Hanna LM Rajala, Pekka Ellonen, Emma I. Andersson, Sonja Lagström, Henrikki Almusa, Henrik Edgren, Maija Lepistö, Pirkko Mattila, Jonathan Knowles, Janna Saarela, Kimmo Porkka, Olli Kallioniemi, Satu Mustjoki, Caroline A. Heckman. Somatic mutation analysis pipeline for exome-sequencing data identifies oncogenic STAT3 mutations in T-LGL leukemia. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 3164. doi:10.1158/1538-7445.AM2013-3164
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 23 ( 2012-12-01), p. 6279-6289
    Abstract: Oncogene-induced DNA replication stress is thought to drive genomic instability in cancer. In particular, replication stress can explain the high prevalence of focal genomic deletions mapping within very large genes in human tumors. However, the origin of single-nucleotide substitutions (SNS) in nonfamilial cancers is strongly debated. Some argue that cancers have a mutator phenotype, whereas others argue that the normal DNA replication error rates are sufficient to explain the number of observed SNSs. Here, we sequenced the exomes of 24, mostly precancerous, colon polyps. Analysis of the sequences revealed mutations in the APC, CTNNB1, and BRAF genes as the presumptive cancer-initiating events and many passenger SNSs. We used the number of SNSs in the various lesions to calculate mutation rates for normal colon and adenomas and found that colon adenomas exhibit a mutator phenotype. Interestingly, the SNSs in the adenomas mapped more often than expected within very large genes, where focal deletions in response to DNA replication stress also map. We propose that single-stranded DNA generated in response to oncogene-induced replication stress compromises the repair of deaminated cytosines and other damaged bases, leading to the observed SNS mutator phenotype. Cancer Res; 72(23); 6279–89. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Allergy and Clinical Immunology, Elsevier BV, Vol. 148, No. 2 ( 2021-08), p. 599-611
    Type of Medium: Online Resource
    ISSN: 0091-6749
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2006613-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 5067-5067
    Abstract: Despite significant advances in characterizing the molecular genetics of AML, the clonal evolution of leukemic cells and the dynamic impact of genomic changes on the development of the disease and progression to drug resistance are not well understood. Here, we applied next-generation sequencing to quantify aberrant tumor subclones carrying specific mutant alleles of key cancer genes and developed a method to extract quantitative high-resolution copy number changes across the genome using exome sequencing data from matching cancer and normal DNA. Serial bone marrow (BM) samples collected from diagnosis to relapse to post-treatment drug resistance in a patient-centric manner made it possible to trace the clonal evolution of AML and to identify variants potentially involved in drug resistance. Exome sequencing from AML blast cells and normal skin biopsies was performed as part of the Finnish Hematology Registry and Biobanking (FHRB) effort. Consecutive paired samples from different patients revealed unique genetic patterns of clonal evolution and cancer progression in each patient. In a pre-resistant sample of one AML M5 patient, we identified four closely spaced insertions in the Wilm's Tumor (WT1) suppressor gene, none of which appear on the same sequence reads. This suggests the presence of multiple distinct leukemic subclones even before treatment resistance and underscores the strong selective advantage conferred by WT1 mutations. After relapse, one of the subclones was lost, and another one significantly increased suggesting that the relapse arose from the expansion of a pre-existing resistant subclone. In this patient, recurrent clones otherwise featured similar copy number changes and the same fusion genes as the primary diagnostic sample. In another AML patient developing recurrence an opposite pattern was observed: The relapsed, drug-resistant cells displayed an enormous increase of small microdeletions compared to the diagnostic, pre-treatment sample, while almost all sequence-level alterations in potential cancer genes were the same between the two samples. This suggests that a distinct type of DNA repair deficiency may have contributed to the drug resistant clone in this patient. Conclusions: Exome sequencing from paired samples of AML cells before and after relapse makes it possible to trace the clonal evolution of the disease and study the impact of therapy both at the level of sequence alterations of key cancer genes and simultaneously at the level of copy number changes inferred from exome sequence data. This analysis has highlighted multiple genomic patterns by which resistance may evolve in vivo during cancer treatment. Refined bioinformatic analysis and interpretation of exome-seq data provides a rich resource to identify genetic biomarkers of drug response and minimal residual disease. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 5067. doi:1538-7445.AM2012-5067
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 936-936
    Abstract: Abstract 936 BACKGROUND: T-cell large granular lymphocyte (LGL) leukemia is an uncommon lymphoproliferative disorder characterized in most cases by expansion of mature, clonal CD3+CD8+ cytotoxic T lymphocytes (CTLs). The pathogenesis of LGL-leukemia is unknown, and leukemic cells closely resemble normal terminally differentiated effector memory CTLs. While resistance to apoptotic pathways (Fas/Fas ligand, sphingolipid) and activation of survival signaling pathways (Ras) have been implicated in LGL leukemia, the underlying genetic defects have not yet been elucidated. We aimed to identify somatic mutations in LGL leukemia by whole exome sequencing of leukemic and matched healthy control cells. METHODS: Our index patient is a 70 year-old male with untreated CD8+ LGL leukemia diagnosed in 2009 with a clonal rearrangement in the T-cell receptor (TCR) delta and gamma gene. He has been asymptomatic with grade 2 neutropenia and an absolute lymphocyte count of 4–15 ×109/L. The patient had one large predominant T-cell clone: 94% of CD8+ cells consisted of a single Vβ16 clone, as assessed by flow cytometry. No clonal expansions were observed in the CD4+ fraction. DNA was extracted from FACS-sorted CD8+ (leukemic) and CD4+ (control) cells and sequenced by exome capture using an Agilent SureSelect All exon 50 MB capture kit and the Illumina GAII sequencing platform. Candidate somatic mutations were identified with a bioinformatics pipeline consisting of BWA for sequence alignment, Samtools for alignment filtering and Varscan for somatic mutation calling. Mutations were manually reviewed in IGV for alignment artifacts and validated by capillary sequencing. DNA samples from 8 additional untreated LGL-leukemia patients were used for further screening of confirmed somatic mutations by capillary sequencing. From six of these patients DNA was extracted from CD8 sorted cells and from two patients from whole blood. RESULTS: Whole exome sequencing of CD8+ leukemic DNA from the index patient identified a missense mutation in the STAT3 gene (D661V), which was subsequently confirmed by capillary sequencing. As STAT3 signaling has been associated with LGL leukemia pathogenesis previously, we next designed primers for the secondary screening of the six exomes of STAT3 SH2 region from the remaining patients. Another recurrent somatic missense mutation (STAT3 Y640F) was identified in two additional patients. Thus, three out of nine LGL patients (33%) showed evidence of mutations in the STAT3 SH2 region. Both missense mutations found (D661V and Y640F) were located in the area of the SH2 domain known to mediate STAT3 protein dimerization and activation. The Y640F mutation alters a conserved tyrosine residue leading to a hyperactivating STAT protein (Scarzello et al. Mol Biol Cell, 2007) and was recently found in a human inflammatory hepatocellular adenoma causing cytokine-independent tyrosine phosphorylation and activation as well as cytokine-dependent hyperactivation of STAT3 (Pitali et al., J Exp Med, 2011). The D661V mutation has not been described previously. CONCLUSIONS: Our data imply for the first time that STAT3 is a common mutational target in LGL leukemia, revealing insights to the molecular pathogenesis of this rare disease. Known structural and functional data on STAT biology imply that the mutations are leading to STAT3 hyperactivation and could also confer ligand-independent signaling. While confirmatory data from a larger series of patients are necessary, our results pinpoint STAT3 mutations and aberrations in the STAT3 pathway as key pathogenetic events in true clonal LGL leukemia. Detection of STAT3 mutations could therefore be applied in the diagnostic assessment, disease stratification and therapeutic monitoring of LGL patients. Disclosures: Koskela: Novartis: Honoraria. Kuittinen:Roche: Consultancy. Porkka:Novartis: Honoraria; Bristol-Myers Squibb: Honoraria. Mustjoki:Novartis: Honoraria; Bristol-Myers Squibb: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: New England Journal of Medicine, Massachusetts Medical Society, Vol. 366, No. 20 ( 2012-05-17), p. 1905-1913
    Type of Medium: Online Resource
    ISSN: 0028-4793 , 1533-4406
    RVK:
    Language: English
    Publisher: Massachusetts Medical Society
    Publication Date: 2012
    detail.hit.zdb_id: 1468837-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 288-288
    Abstract: Abstract 288 Introduction: Recent genomic analyses of acute myeloid leukemia (AML) patients have provided new information on mutations contributing to the disease onset and progression. However, the genomic changes are often complex and highly diverse from one patient to another and often not actionable in clinical care. To rapidly identify novel patient-specific therapies, we developed a high-throughput drug sensitivity and resistance testing (DSRT) platform to experimentally validate therapeutic options for individual patients with relapsed AML. By integrating the results with exome and transcriptome sequencing plus proteomic analysis, we were able to define specific drug-sensitive subgroups of patients and explore predictive biomarkers. Methods: Ex vivo DSRT was implemented for 29 samples from 16 adult AML patients at the time of relapse and chemoresistance and from 5 healthy donors. Fresh mononuclear cells from bone marrow aspirates ( 〉 50% blast count) were screened against a comprehensive collection of cytotoxic chemotherapy agents (n=103) and targeted preclinical and clinical drugs (n=100, later 170). The drugs were tested over a 10,000-fold concentration range resulting in a dose-response curve for each compound and each leukemia sample. A leukemia-specific drug sensitivity score (sDSS) was derived from the area under each dose response curve in relation to the total area, and comparing leukemia samples with normal bone marrow results. The turnaround time for the DSRT assay was 4 days. All samples also underwent deep exome (40–100×) and transcriptome sequencing to identify somatic mutations and fusion transcripts, as well as phosphoproteomic array analysis to uncover active cell signaling pathways. Results: The drug sensitivity profiles of AML patient samples differed markedly from healthy bone marrow controls, with leukemia-specific responses mostly observed for molecularly targeted drugs. Individual AML patient samples clustered into distinct subgroups based on their chemoresponse profiles, thus suggesting that the subgroups were driven by distinct signaling pathways. Similarly, compounds clustered based on the response across the samples revealing functional groups of compounds of both expected and unexpected composition. Furthermore, subsets of patient samples stood out as highly sensitive to different compounds. Specifically, dasatinib, rapalogs, MEK inhibitors, ruxolitinib, sunitinib, sorafenib, ponatinib, foretinib and quizartinib were found to be selectively active in 5 (31%), 5 (31%), 4 (25%), 4 (25%), 3 (19%), 3 (19%), 2 (13%), 2 (13%), and 1 (6%) of the AML patients ex vivo, respectively. DSRT assays of serial samples from the same patient at different stages of leukemia progression revealed patterns of resistance to the clinically applied drugs, in conjunction with evidence of dynamic changes in the clonal genomic architecture. Emergence of vulnerabilities to novel pathway inhibitors was seen at the time of drug resistance, suggesting potential combinatorial or successive cycles of drugs to achieve remissions in an increasingly chemorefractory disease. Genomic and molecular profiling of the same patient samples not only highlighted potential biomarkers reflecting the ex vivo DSRT response patterns, but also made it possible to follow in parallel the drug sensitivities and the clonal progression of the disease in serial samples from the same patients. Summary: The comprehensive analysis of drug responses by DSRT in samples from human chemorefractory AML patients revealed a complex pattern of sensitivities to distinct inhibitors. Thus, these results suggest tremendous heterogeneity in drug response patterns and underline the relevance of individual ex vivo drug testing in selecting optimal therapies for patients (personalized medicine). Together with genomic and molecular profiling, the DSRT analysis resulted in a comprehensive view of the drug response landscape and the underlying molecular changes in relapsed AML. These data can readily be translated into the clinic via biomarker-driven stratified clinical trials. Disclosures: Mustjoki: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria. Kallioniemi:Roche: Research Funding; Medisapiens: Membership on an entity's Board of Directors or advisory committees. Porkka:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: American Journal of Medical Genetics Part A, Wiley, Vol. 179, No. 7 ( 2019-07), p. 1362-1365
    Abstract: Fetal akinesia deformation sequence (FADS) and lethal multiple pterygium syndrome (LMPS) are clinically overlapping syndromes manifesting with reduced or absent fetal movement, arthrogryposis, and several anomalies during fetal life. The etiology of these syndromes is heterogeneous, and in many cases it remains unknown. In order to determine the genetic etiology of FADS in two fetuses with fetal akinesia, arthrogryposis, edema, and partial cleft palate, we utilized exome sequencing. Our investigations revealed a homozygous nonsense variant [c.1116C 〉 A, p.(Cys372Ter)] in the SLC18A3 gene, which encodes for the vesicular acetylcholine transporter (VAChT) responsible for active transport of acetylcholine in the neuromuscular junction. This is the first description of a nonsense variant in the SLC18A3 gene, as only missense variants and whole gene deletions have been previously identified in patients. The previously detected SLC18A3 defects have been associated with congenital myasthenic syndromes, and therefore our findings extend the clinical spectrum of SLC18A3 defects to severe prenatal phenotypes. Our findings suggest that nonsense variants in SLC18A3 cause a more severe phenotype than missense variants and are in line with previous studies showing a lethal phenotype in VAChT knockout mice. Our results underline the importance of including SLC18A3 sequencing in the differential diagnostics of fetuses with arthrogryposis, FADS, or LMPS of unknown etiology.
    Type of Medium: Online Resource
    ISSN: 1552-4825 , 1552-4833
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1493479-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: American Journal of Medical Genetics Part A, Wiley, Vol. 182, No. 11 ( 2020-11), p. 2605-2610
    Abstract: The multiple pterygium syndromes (MPS) are rare disorders with disease severity ranging from lethal to milder forms. The nonlethal Escobar variant MPS (EVMPS) is characterized by multiple pterygia and arthrogryposis, as well as various additional features including congenital anomalies. The genetic etiology of EVMPS is heterogeneous and the diagnosis has been based either on the detection of pathogenic CHRNG variants (~23% of patients), or suggestive clinical features. We describe four patients with a clinical suspicion of EVMPS who manifested with multiple pterygia, mild flexion contractures of several joints, and vertebral anomalies. We revealed recessively inherited MYH3 variants as the underlying cause in all patients: two novel variants, c.1053C 〉 G, p.(Tyr351Ter) and c.3102+5G 〉 C, as compound heterozygous with the hypomorphic MYH3 variant c.‐9+1G 〉 A. Recessive MYH3 variants have been previously associated with spondylocarpotarsal synostosis syndrome. Our findings now highlight multiple pterygia as an important feature in patients with recessive MYH3 variants. Based on all patients with recessive MYH3 variants reported up to date, we consider that this disease entity should be designated as “Contractures, pterygia, and variable skeletal fusions syndrome 1B,” as recently suggested by OMIM. Our findings underline the importance of analyzing MYH3 in the differential diagnosis of EVMPS, particularly as the hypomorphic MYH3 variant might remain undetected by routine exome sequencing.
    Type of Medium: Online Resource
    ISSN: 1552-4825 , 1552-4833
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1493479-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages