feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (2)
  • Börnke, Frederik  (1)
  • Camehl, Iris  (1)
  • 1
    UID:
    gbv_1727826450
    Format: XV, 134 Seiten , Diagramme, Illustrationen
    Content: Recently crops encounter an increased number of individual and combined abiotic and biotic stress, which severely affect their growth and yield. Plants are associated with a large number of microorganisms including beneficial as well as pathogenic microorganisms. The interaction of plants with beneficial microorganisms can exert a substantial impact on plant growth and health and their potential can be utilized in sustainable plant production systems. Currently, climate change will increase the impact of stress on crops which will more likely be exposed to combined abiotic and biotic stress. At present, knowledge on how abiotic and biotic stress and the combination of both stresses affect the plant performance and the microbiome is limited. Soil-borne pathogens are responsible for relevant economic losses and are difficult to control. The root bacterial endophytes have shown potential in alleviating stress on plants and improving crop yield and quality. This raises the question how individual abiotic stress like salinity (ionic) and drought (osmotic) and the combination with biotic stress (Verticillium dahliae or Fusarium oxysporum) affects the root microbiota and thus the performance of the plant. Therefore, the goal of this thesis was to improve the understanding of the impact of individual and combined biotic and abiotic stress especially the endophytic root microbiota and thus plant performance. The work is focused on the economically important horticultural crop tomato. [...]
    Note: Dissertation Universität Potsdam 2020
    Language: English
    Subjects: Agriculture, Forestry, Horticulture, Fishery, Domestic Science
    RVK:
    Keywords: Stressreaktion ; Tomate ; Endophyten ; Hochschulschrift
    Author information: Franken, Philipp 1960-
    Author information: Gulati, Sneha 1989-
    Author information: Börnke, Frederik 1971-
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    edochu_18452_25643
    Format: 1 Online-Ressource (14 Seiten)
    Content: Dark septate endophytes (DSEs) represent a diverse group of root-endophytic fungi that have been isolated from plant roots in many different natural and anthropogenic ecosystems. Melanin is widespread in eukaryotic organisms and possesses various functions such as protecting human skin from UV radiation, affecting the virulence of pathogens, and playing a role in development and physiology of insects. Melanin is a distinctive feature of the cell walls of DSEs and has been thought to protect these fungi from abiotic stress. Melanin in DSEs is assumed to be synthesized via the 1,8-dihydroxynaphthalene (DHN) pathway. Its function in alleviation of salt stress is not yet known. The aims of this study were: (i) investigating the growth responses of three DSEs (Periconia macrospinosa, Cadophora sp., and Leptodontidium sp.) to salt stress, (ii) analyzing melanin production under salt stress and, (iii) testing the role of melanin in salt stress tolerance of DSEs. The study shows that the three DSE species can tolerate high salt concentrations. Melanin content increased in the hyphae of all DSEs at 100 mM salt, but decreased at 500 mM. This was not reflected in the RNA accumulation of the gene encoding scytalone dehydratase which is involved in melanin biosynthesis. The application of tricyclazole, a DHN-melanin biosynthesis inhibitor, did not affect either salt stress tolerance or the accumulation of sodium in the hyphae. In addition, melanin biosynthesis mutants of Leptodontidium sp. did not show decreased growth performance compared to the wild-type, especially not at high salt concentrations. This indicates that DSEs can live under salt stress and withstand these conditions regardless of melanin accumulation.
    Content: Peer Reviewed
    In: Lausanne : Frontiers Media, 11
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages