Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 781-781
    Abstract: Abstract 781FN2 Introduction: Data on second line therapy with second generation tyrosine kinase inhibitors (TKI) in CML treatment were generated mainly from phase II/III industry initiated trials (Review Hehlmann Exp Op. 2011). 24-month overall survival (OS) varies between 88% and 94% after intolerance and/or resistance to imatinib for chronic phase (CP) and between 67% and 72% for accelerated phase (AP) or blast crisis (BC). Intention to treat analyses including outcome of patients after discontinuation of first line therapies have not been available as yet. We thought to evaluate overall and progression-free survival (OS and PFS) of imatinib intolerant vs. resistant patients under second line TKI with long-term follow-up within an investigator initiated trial. Methods: We analyzed data of the German CML study IV, a randomized 5-arm trial to optimize imatinib therapy on an intention to treat basis. According to protocol, follow-up of patients on and after second generation TKI after imatinib intolerance and/or resistance was continued for OS and PFS. Analysis of PFS was only relevant, if intolerance and resistance to imatinib therapy occurred while a patient was still in chronic phase (CP). Patients were censored at the time of allogeneic stem cell transplantation (allo-SCT). Results: From July 2002 to December 2010, 1,502 patients with Philadelphia chromosome and /or BCR-ABL positive CML in CP were randomized. 129 patients of the “imatinib after interferon arm” and 36 other patients had to be excluded (14 due to incorrect randomization or withdrawal of consent, 22 with missing baseline information). 1337 were randomized to primary imatinib treatment (imatinib 400 mg vs. imatinib 800 mg vs. imatinib in combination with either interferon alpha or araC). Of these, 234 (17%) discontinued imatinib therapy. 156 patients were treated with 2nd generation TKI, 61 were directly referred to allo-SCT, 17 patients received other regimens (including interferon alpha only or hydroxyurea). 120 of 156 patients started second generation TKI therapy (nilotinib, n=41, dasatinib, n=75, bosutinib, n=2, nilotinib and dasatinib, n=2) within 3 months after stopping imatinib, received treatment for at least one week and were evaluable for PFS and OS. 36 patients received second TKI later (median 10 months, range 3.5–61.4). Median age was 50 years (range 16–78), 42.5% were female. 48 patients were intolerant, 48 failed imatinib within CP and 24 after loss of CP (accelerated phase, n=10, blast crisis, n=14). Median time to second generation TKI was 17 months (range 1.4–97 months) and median follow-up after start of second-line TKI 31 months (range 0.2–71 months). Risk stratification according to the EUTOS Score was high in 20 patients (17%) and low in 94 patients (78%) and unknown in 6 patients (5%). OS for all 120 patients 3 years after start of second generation TKI was 73%, 96% for intolerant and 80% for resistant patients in CP and 19% for resistant patients in advanced disease (s. Fig. 1). According to EUTOS score, 3-year OS was 78% for low and 56% for high risk patients. Probability of PFS of the 96 patients in 1st CP after 3 years was 96% for intolerant and 76% for resistant patients. After 2nd generation TKI, 18 patients received an allo-SCT: all were in CP, 2 patients after imatinib intolerance, 16 patients after imatinib resistance. Conclusion: Survival on second generation TKI is high for imatinib intolerant patients in first CP but much lower for resistant patients in first CP or for patients with advanced disease phases. Alternative treatment strategies are warranted for these patient groups. Disclosures: Krause: Micromet: Research Funding. Kneba:Hoffmann La Roche: Honoraria. Hochhaus:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. German CML Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; BMBF: Research Funding; EU: Research Funding; Roche: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 15_suppl ( 2014-05-20), p. 7021-7021
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 93, No. 7 ( 2014-7), p. 1167-1176
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 1458429-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 8 ( 2020-08), p. 2074-2086
    Abstract: Blast crisis is one of the remaining challenges in chronic myeloid leukemia (CML). Whether additional chromosomal abnormalities (ACAs) enable an earlier recognition of imminent blastic proliferation and a timelier change of treatment is unknown. One thousand five hundred and ten imatinib-treated patients with Philadelphia-chromosome-positive (Ph+) CML randomized in CML-study IV were analyzed for ACA/Ph+ and blast increase. By impact on survival, ACAs were grouped into high risk (+8, +Ph, i(17q), +17, +19, +21, 3q26.2, 11q23, −7/7q abnormalities; complex) and low risk (all other). The presence of high- and low-risk ACAs was linked to six cohorts with different blast levels (1%, 5%, 10%, 15%, 20%, and 30%) in a Cox model. One hundred and twenty-three patients displayed ACA/Ph+ (8.1%), 91 were high risk. At low blast levels (1–15%), high-risk ACA showed an increased hazard to die compared to no ACA (ratios: 3.65 in blood; 6.12 in marrow) in contrast to low-risk ACA. No effect was observed at blast levels of 20–30%. Sixty-three patients with high-risk ACA (69%) died ( n  = 37) or were alive after progression or progression-related transplantation ( n  = 26). High-risk ACA at low blast counts identify end-phase CML earlier than current diagnostic systems. Mortality was lower with earlier treatment. Cytogenetic monitoring is indicated when signs of progression surface or response to therapy is unsatisfactory.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 31, No. 15_suppl ( 2013-05-20), p. 7051-7051
    Abstract: 7051 Background: Since complete molecular remission (CMR 4.5) defines a subgroup of patients who may stay in remission even after discontinuation of treatment, we analysed whether CMR 4.5 is reached faster with dose optimized IM 800 mg and whether the achievement of CMR 4.5 at specified points in time results in better survival than the achievement of less deep remissions. Methods: Confirmed CMR 4 and CMR 4.5 are defined as ≤ 0.01% BCR-ABL IS or ≥ 4 log reduction and ≤ 0.0032% BCR-ABL IS or ≥ 4.5 log reduction, respectively, from standardized baseline as determined by real-time PCR in 2 independent analyses. Details on CML-Study IV have been published (Hehlmann et al., JCO 2011). Cumulative incidences were estimated under consideration of competing risks. Landmark analyses were performed to evaluate the prognostic impact of different remissions at 4 years on survival. Results: Of 1551 randomized patients with newly diagnosed chronic phase CML 1525 were evaluable. Median age was 52 years, 88% were EUTOS low risk, 12% high risk. 113 patients were transplanted (73 in first chronic phase), 246 received 2nd generation TKI. 152 patients have died. After a median observation time of 67.5 months, 6-year OS was 88.2%.CMR 4.5 was reached after a median of about 76.1 months with IM 800 and 107.3 months with IM 400. EUTOS low-risk patients reached all remissions faster than high-risk patients. Independent of treatment approach CMR 4.5 at 4 years predicted OS significantly better than complete cytogenetic remission (p=0.043), but not significantly better than major molecular remission (MMR) or CMR4. After a median observation of 3.9 years 1 of 626 patients with CMR 4 has progressed. Only six of the 394 patients with CMR 4.5 have died after a median observation time of 3.0 years, no patient has progressed. An additional finding was that achieving MMR at 3 and at 6 months predicts faster achievement of CMR 4.5. Conclusions: We conclude that dose optimized IM 800 induces CMR 4.5 faster than IM 400 and that CMR 4.5 at 4 years is associated with a survival advantage. Dose optimized IM 800 may provide an improved therapeutic basis for treatment discontinuation in patients with CML. Clinical trial information: NCT00055874.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2013
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 32, No. 5 ( 2014-02-10), p. 415-423
    Abstract: Deep molecular response (MR 4.5 ) defines a subgroup of patients with chronic myeloid leukemia (CML) who may stay in unmaintained remission after treatment discontinuation. It is unclear how many patients achieve MR 4.5 under different treatment modalities and whether MR 4.5 predicts survival. Patients and Methods Patients from the randomized CML-Study IV were analyzed for confirmed MR 4.5 which was defined as ≥ 4.5 log reduction of BCR-ABL on the international scale (IS) and determined by reverse transcriptase polymerase chain reaction in two consecutive analyses. Landmark analyses were performed to assess the impact of MR 4.5 on survival. Results Of 1,551 randomly assigned patients, 1,524 were assessable. After a median observation time of 67.5 months, 5-year overall survival (OS) was 90%, 5-year progression-free-survival was 87.5%, and 8-year OS was 86%. The cumulative incidence of MR 4.5 after 9 years was 70% (median, 4.9 years); confirmed MR 4.5 was 54%. MR 4.5 was reached more quickly with optimized high-dose imatinib than with imatinib 400 mg/day (P = .016). Independent of treatment approach, confirmed MR 4.5 at 4 years predicted significantly higher survival probabilities than 0.1% to 1% IS, which corresponds to complete cytogenetic remission (8-year OS, 92% v 83%; P = .047). High-dose imatinib and early major molecular remission predicted MR 4.5 . No patient with confirmed MR 4.5 has experienced progression. Conclusion MR 4.5 is a new molecular predictor of long-term outcome, is reached by a majority of patients treated with imatinib, and is achieved more quickly with optimized high-dose imatinib, which may provide an improved therapeutic basis for treatment discontinuation in CML.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2014
    detail.hit.zdb_id: 2005181-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3411-3411
    Abstract: Abstract 3411 Background: Dose of therapy and time to response may be different in the elderly as compared to younger patients with CML. This has been reported previously for interferon α (Berger et al., Leukemia 2003). For imatinib, contradictory results have been presented (Rosti et al. Haematologica 2007, Guliotta et al. Blood 2009). Aims: An analysis comparing dose-response relationship in patients more or less than 65 years (y) of age is warranted. Methods: We analysed the German CML-Study IV, a randomized 5-arm trial to optimize imatinib therapy by combination, dose escalation and transplantation. Patients older and younger than 65y randomized to imatinib 400 mg (IM400) or 800 mg (IM800) were compared with regard to time to hematologic, cytogenetic and molecular remissions, imatinib dose, adverse events (AEs) and overall survival (OS). Results: From July 2002 to April 2009, 1311 patients with Ph+ CML in chronic phase were randomized, 623 patients were evaluable, 311 patients for treatment with IM400 and 312 for IM800. 84 (27%) and 66 (21%), respectively, were older than 65 years. All patients were evaluable for hematologic, 578 (140 〉 65y and 438 〈 65y) for cytogenetic, and 600 (143 and 457, respectively) for molecular responses. Median age was 70y vs. 49y for IM400 and 69y vs. 46y for IM800. The median dose per day was lower for elderly patients with IM800 (517mg vs. 666mg) and the same with IM400 (400mg each). Patients' characteristics at baseline were evenly distributed in all groups regarding gender, follow-up, hemoglobin, platelet count and spleen size. Leukocyte counts were significantly lower in elderly patients (IM400: 50/nl vs. 78/nl, IM800: 36/nl vs. 94/nl). EURO score was different due to age in elderly patients (low risk: IM400: 11% vs. 43%, IM800: 14% vs. 42%; intermediate risk: IM400: 79% vs. 44% and IM800: 73% and 43%). There was no difference in cytogenetic and molecular analyses between treatment groups. With regard to efficacy, there was no difference for older patients in achieving a complete cytogenetic remission (CCR) and major molecular remission (MMR) if IM400 and IM800 were compared together. If treatment groups were analyzed separately, older patients treated with IM400 reached CCR and MMR statistically significant slower than younger patients (CCR: median 14.2 months vs. 12.1 months, p=0.019; MMR: median 18.7 months vs. 17.5 months, p=0.006). There was no difference with IM800 (CCR: median 7.7 months vs. 8.9 months, MMR: median 9.9 months vs. 10.0 months). 3y-OS for older patients 〉 65y was 94.7% and for patients 〈 65y was 96.1%. Some differences were observed in the safety analyses. 530 patients (IM400: 278, IM800: 252) were evaluated on common toxicity criteria (WHO). Some hematologic AEs were documented slightly more often in the elderly than in the younger patients: for IM400 anemia grade 1–2 (60 vs. 42%) and leukopenia grade 3–4 (5.6 vs. 1.4%) and for IM800 anemia grade 1–4 (64 vs.47% and 7.2 vs. 5.7%) and thrombocytopenia grade 3–4 (9.3 vs. 7.1%). Non hematologic AEs were more prominent in IM800 and were mainly gastrointestinal symptoms (IM400: 33 vs. 31%, IM800: 48 and 44%) and edema (IM400: 28 vs. 29%, IM800: 35 vs. 50%). There was no difference for grade 3/4 non-hematological AEs in older patients in both groups. Conclusions: Imatinib 400 mg and 800 mg are well tolerated also in the elderly. The IM800 dosage was more tolerability-adapted for the elderly, but there was no difference in reaching a CCR and MMR in contrast to the IM400 where a significantly slower response was detected in the elderly. Whether this difference is clinically relevant has yet to be determined. Updated results will be presented. Disclosures: Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership, Research Funding. German CML-Study Group:Deutsche Krebshilfe: Research Funding; Novartis: Research Funding; Roche: Research Funding; BMBF: Research Funding; Essex: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 4008-4008
    Abstract: Depth of molecular remission on tyrosine kinase inhibitor (TKI) treatment is of rising importance for chronic myeloid leukemia (CML) patients (pts) with regard to possible treatment discontinuation and competing TKIs available to improve molecular response. At present, it is unknown which level of deep molecular response is necessary for optimal prognosis and for successfully stopping therapy. The aim of this work is both to evaluate the technical feasibility of molecular monitoring at the mentioned level and to search for factors allowing to predict MR5.0 in pts on imatinib (IM)-based treatment. Methods Real-time quantitative PCR on mRNA BCR-ABL transcripts in addition to total ABL transcripts as internal control has been performed on a LightCycler platform in 1,442 pts within the randomized CML-Study IV and adapted according to the International Scale (IS). In order to qualify for MR5.0 the BCR-ABLIS expression should meet one of the following criteria: a positive result ≤0.001% or a negative result with a minimum sample quality of 100,000 ABL copies (Cross et al., Leukemia 2012). Calculating cumulative incidences of remission or progression, the competing risks progression and/or death before possible progression were considered. Cox models were estimated for the multivariate analysis. Results In 1,198 of the 1,442 molecularly examined pts at least one sample fulfilled the sensitivity criteria for a MR5.0 (8,266 of 24,101 samples, 34.3%). Cumulative incidence of MR5.0 was 51% at 8 years. The median time to MR5.0 according to randomized treatment arms differed as follows: IM 800mg 79.7 months (mos), IM 400mg 95.0 mos, IM 400mg + IFNα 98.0 mos, IM 400mg + AraC 103.3 mos, IM 400mg after IFN failure 112.9 mos. A Cox model examining the different treatment arms compared to IM 400mg revealed a significantly higher chance for MR5.0 in the IM 800mg arm (HR 1.305, 95% CI 1.003-1.698, p=0.048). Baseline factors like thrombocytosis 〉 450/nl were associated with better responses (HR 1.701 compared to 〈 450/nl, 95% CI 1.405-2.059, p 〈 0.001) and higher leukocyte counts 〉 100/nl (HR 0.503 compared to 〈 50/nl, 95% CI 0.400-0.632, p 〈 0.001) and 50-100/nl (HR 0.746 compared to 〈 50/nl, 95% CI 0.591-0.942, p=0.014) with unfavorable responses. Other upfront factors like age, gender, blasts, eosinophils, hemoglobin, and EUTOS score did not significantly influence the probability for MR5.0. Taken all treatment arms together, our analyses have shown that the chance of achieving a MR5.0 by 8 years was considerably reduced if the pts had a BCR-ABLIS 〉 10% at 3 mos (40.2% vs 58.0%), 〉 1% at 6 mos (40.3% vs 68.7%), 〉 0.1% at 12 mos (37.7% vs 72.0%), and 〉 0.1% at 24 mos (21.5% vs 60.5%). Conclusion This evaluation of a large randomized trial reveals feasibility of MR5.0 detection in the majority of pts underlining the benefits of standardized molecular monitoring on the IS with optimized highly sensitive technologies. Baseline low leukocyte count, high thrombocyte count and high dose IM treatment are predictors of future MR5.0. Further, early molecular landmarks qualify for excellent outcome giving hope to a rising number of pts to successfully discontinue treatment and avoid possible side effects or comorbidities. Disclosures: Müller: Novartis: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding. Hehlmann:BMS: Consultancy, Research Funding; Novartis: Research Funding. Hochhaus:Novartis: Consultancy, Honoraria, Research Funding, Travel Other; BMS: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria; Ariad: Consultancy, Honoraria. Saussele:Novartis: Honoraria, Research Funding, Travel Other; BMS: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3138-3138
    Abstract: Introduction: The clonal selection of a mutant BCR-ABL positive clone can be observed in about one of two patients with imatinib-resistant chronic myeloid leukemia (CML). The early detection of BCR-ABL kinase domain mutations is crucial, since it allows to change the tyrosine kinase inhibitor (TKI) regimen in a timely manner and may therefore prevent disease progression and the accumulation of further genetic lesions. European LeukemiaNet (ELN) recommendations suggest a mutation analysis if optimal response criteria are not achieved at 3, 6, 12 or 18 months, or whenever a loss of optimal response occurs (Soverini et al., Blood 2011). Several attempts have been made to derive this indication from a specific increase of BCR-ABL levels. Here we report on the correlation of a rise in BCR-ABL transcript levels and the prevalence of BCR-ABL kinase domain mutations in imatinib-treated patients of the CML-Study IV. Methods: A total of 1,173 patients were enrolled until 2009 and randomized to one of four imatinib-based treatment arms. BCR-ABLIS of 988 patients was determined in 7,876 samples by quantitative RT-PCR in the central laboratory (median sample number per patient: 8.4, range 1-37; median follow up: 34 months, range 0-86), representing the eligible patients for the study. Thereby, the estimated intra-laboratory variance is assumed to be about 20%. A first rise of BCR-ABLIS to at least two-fold and 〉 0.1% between two samples of a patient's molecular course defined a sample suspected of bearing a mutant BCR-ABL positive clone. A mutation analysis was performed on this critical sample by direct sequencing of ABL exons 4 to 10. Results: A critical rise in BCR-ABLIS was observed in 231 of 988 patients (23%) after a median of 15.2 months on treatment (range 2.8-59.4). In the corresponding sample 33 mutant clones could be detected in 31 patients (13%). Thereby a steeper rise of BCR-ABLIS was correlated with a higher incidence of BCR-ABL mutations in the respective group (table). A total of 18 different mutations could be detected, the most frequent were: M244V, n=7 (21%); E255K, n=4 (12%); T315I, n=3 (9%); L248V, G250E, L387M and F486S, n=2 (6%), respectively. Mutations occur in a substantial proportion (8%) of patients with an only 2 to 3-fold rise of BCR-ABLIS transcript levels (table). Therefore, the most sensitive cut-off should be applied and mutation analysis may be triggered by a doubling of BCR-ABL transcripts at levels 〉 0.1% IS. Conclusion: BCR-ABL kinase domain mutations occur already in a substantial proportion of patients with a doubling of BCR-ABL transcript levels, which should determine mutation analysis. Table 1. Rise of BCR-ABL expression Patients (n) Patients with BCR-ABL mutations (n) Patients with BCR-ABL mutations (%) Inter-sample interval(median, days) 2 to 3-fold 72 6 8.3 98 3 to 5-fold 50 3 6.0 100 5 to 10-fold 39 4 10.3 99 10 to 100-fold 49 10 20.4 98 〉 100-fold 21 8 38.1 125 〉 2-fold (total) 231 31 13.4 101 Disclosures Hanfstein: Novartis: Research Funding; Bristol-Myers Squibb: Honoraria. Hehlmann:Novartis: Research Funding; Bristol-Myers Squibb: Research Funding. Saussele:Novartis: Honoraria, Research Funding, Travel Other; Bristol-Myers Squibb: Honoraria, Research Funding, Travel, Travel Other; Pfizer: Honoraria, Travel, Travel Other. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Neubauer:MedUpdate: Honoraria, Speakers Bureau. Kneba:Novartis: Consultancy, Equity Ownership, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Pfirrmann:Novartis: Consultancy; Bristol-Myers Squibb: Honoraria. Hochhaus:Pfizer: Consultancy, Research Funding; ARIAD: Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding. Müller:Novartis: Honoraria, Research Funding; Bristol Myers Squibb: Honoraria, Research Funding; ARIAD: Honoraria, Research Funding; Pfizer: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3761-3761
    Abstract: Abstract 3761 Introduction: Early assessment of molecular and cytogenetic response at 3 months of imatinib treatment has been shown to predict survival and might trigger treatment intensification in slow responders who are supposed to harbor a BCR-ABL positive clone with inferior susceptibility to tyrosine kinase inhibition (Hanfstein et al., Leukemia 2012). BCR-ABL transcript levels at 3 months depend on levels at diagnosis and the subsequent decline under treatment. Which of both parameters determines the clinical course and allows for prediction of survival is unclear. The BCR-ABL/ABL ratio is supposed to be skewed for high values, e.g. 〉 10%, due to the fact that ABL transcripts are also amplified from the fusion gene and in fact BCR-ABL/(ABL + BCR-ABL) is determined. Therefore, Beta-glucuronidase (GUS) was used as reference gene to determine high transcript levels at diagnosis. In addition, the linearity of the BCR-ABL/GUS scale allowed for an optimization of prognostic cut-off levels. We compared the significance of 1) BCR-ABL/GUS at diagnosis, 2) BCR-ABL/GUS at 3 months, 3) the individual reduction of transcripts given by (BCR-ABL/GUS at 3 months)/(BCR-ABL/GUS at diagnosis), and 4) the established 10% BCR-ABL/ABL landmark expressed on the international scale (BCR-ABLIS). Patients and methods: A total of 337 patients (pts) were investigated. According to the protocol of the German CML study IV pts could have been pre-treated with imatinib up to 6 weeks before randomization. 56 pts with imatinib onset before initial blood sampling within the study were excluded from the analysis. A total of 281 evaluable patients (median age 51 years, range 17–85, 42% female) were treated with an imatinib-based therapy consisting of imatinib 400 mg/d (n=76), imatinib 800 mg/d (n=110) and combinations of standard dose imatinib with interferon alpha (n=84) and low-dose cytarabine (n=11). Median follow-up was 4.8 years (range 1–10). Transcript levels of BCR-ABL, ABL, and GUS were determined by quantitative RT-PCR from samples taken before imatinib onset (“at diagnosis”) and 3 month samples. Only patients expressing typical BCR-ABL transcripts (b2a2 and/or b3a2) were considered. Disease progression was defined by the incidence of accelerated phase, blastic phase or death from any reason. A landmark analysis was performed for progression free survival (PFS) and overall survival (OS) after dichotomizing patients by a cut-off optimized by the cumulative martingale residuals method. Results: The median BCR-ABL/GUS ratio was 15.5% at diagnosis (0.07–271) and 0.62% at 3 months (0–34.7) reflecting a decline by 1.4 log. Disease progression was observed in 17 patients (6.0%), 14 of them died (5.0%). With regard to the above described parameters the following findings were observed: 1) at diagnosis no cut-off level could be identified for BCR-ABL/GUS ratios to separate two prognostic groups according to long-term PFS or OS. 2) At 3 months an optimized 2.8% BCR-ABL/GUS cut-off separated a high-risk group of 61 pts (22% of pts, 8-year PFS 78%, 8-year OS 81%) from a good-risk group of 220 pts (78% of pts, 8-year PFS 94%, 8-year OS 94%, p 〈 0.001, respectively). 3) At 3 months an individual reduction of BCR-ABL transcripts to at least 40% (0.4 log) of the initial level separated best and divided a high-risk group of 33 pts (12% of pts, 8-year PFS 74%, 8-year OS 80%) from a good-risk group of 248 pts (88% of pts, 8-year PFS 93%, 8-year OS 93%, p 〈 0.001, respectively). 4) When the established 10% BCR-ABLIS at 3 months was investigated, 63 pts were high-risk (22% of pts, 8-year PFS 82%, 8-year OS 85%) and 218 good-risk (78% of pts, 8-year PFS 91%, 8-year OS 93%, p=0.002 for PFS, p=0.011 for OS). Conclusions: Initial BCR-ABL transcript levels at diagnosis did not show prognostic significance. To predict survival at 3 months of treatment the absolute transcript level normalized by ABL or GUS can be used. Disclosures: Schnittger: MLL Munich Leukemia Laboratory: Equity Ownership. Hochhaus:Novartis, BMS, MSD, Ariad, Pfizer: Consultancy Other, Honoraria, Research Funding. Müller:Novartis, BMS: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages