Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 1_Supplement ( 2016-01-01), p. PR01-PR01
    Kurzfassung: Background: Molecular characterization of tumor and/or host has the potential to advance the management of pediatric cancer and high risk hematologic disease, but the clinical utility of integrating genomic profiling into standard clinical practice has been limited. The PIPseq Program at Columbia University has instituted prospective CLIA-compliant genomic sequencing for newly diagnosed, high risk, relapsed or refractory pediatric cancer patients and patients referred for bone marrow transplantation. Methods: Families are consented for clinical cancer whole-exome sequencing (cWES) or constitutional whole-exome sequencing (WES) with opt out options for return of results, exclusion of results from medical records, receipt of American College of Medical Genetics (ACMG) recommended secondary germline variants, and data/ sample use in research. Molecular characterization utilizes next generation cWES, WES, RNAseq (transcriptome), or targeted sequencing of select cancer genes. Clinical cancer reports include: known tumor type-specific actionable somatic mutations (Tier 1); somatic mutations actionable in other tumor types, in targetable pathways, or in well-established cancer genes (Tier 2); other somatic mutations in cancer genes (Tier 3); and somatic variants of uncertain significance (VUS; Tier 4). Reports for cWES testing also note translocations, significantly over expressed genes, segmental copy number variation, and germline variants. Institutional Review Board approval was obtained to conduct a retrospective review of results to date. Five categories were developed to assess clinical utility and describe significance: 1) diagnostic, 2) prognostic, 3) potentially actionable target, 4) other critical role in decision making, and 5) implications for health maintenance and genetic counseling. Results: Since January 2014, adequate tissue samples were available for 47 patients, including 31 (66%) with solid tumors and 16 (34%) with hematologic conditions. Testing included cWES (n=8), cWES with transcriptome (n=15), transcriptome only (n=1), targeted somatic panel (n=8), constitutional WES only (n=6), and multiple sequencing platforms (n=7). Normal tissue was obtained from buccal swab (n=8), blood (n=18), and unaffected tissue (n=1). Three families opted out of receiving secondary findings. Genomic aberrations were reported in 41/47 patients. Of the 127 cancer alterations found, 70 (55%) were in 15 patients with hematologic disease (median 2, range 1-11) and 57 (45%), were in 26 patients with solid tumors (median 1, range 1-6). Among the hematologic cases, alterations of known or potential clinical relevance were categorized as Tier 1 (n=0), Tier 2 (n=27), Tier 3 (n=2) mutation, or translocation (n=4); whereas in solid tumors these were categorized as Tier 1 (n=1), Tier 2 (n=14), Tier 3 (n=3) mutation, or translocation (n=9). Twenty-four Tier 4 somatic VUS were identified in hematologic specimens and 26 in solid tumor specimens. Genomic interrogation informed diagnosis in 10 patients (3 previously unknown); provided new prognostic information in 4; identified potentially actionable targets in 15; influenced clinical decision making regarding bone marrow transplant in 2; and revealed cancer or other disease predisposition in 7. Secondary germline ACMG findings in BRCA1 and PMS2 were found. Germline APC mutation was confirmed in one patient and germline VUS in SDHC was seen in another. Novel germline findings were also observed in RUNX1, MLL2 and DICER1. Overall, the PIPseq platform provided clinically impactful results in 30/47 cases (64%). Conclusions: Utilizing a CLIA-compliant prospective WES-based platform, more than half of selected patients derived clinically impactful information. The potential clinical utility of genomic sequencing in pediatric hematology-oncology has likely been underestimated. This abstract is also presented as Poster 50. Citation Format: Julia L. Glade Bender, Jennifer A. Oberg, Maria Luisa Sulis, Filamon Dela Cruz, Anthony N. Sireci, Susan J. Hsiao, Darrell J. Yamashiro, Carrie Koval, Wendy K. Chung, Stephen G. Emerson, Rebecca Zylber, Samantha Cano, Danielle P. Denney, Stuart Andrews, Peter L. Nagy, Mahesh M. Mansukhani, Andrew L. Kung. Precision in Pediatric Sequencing (PIPseq): Clinical implementation of genomic sequencing into pediatric hematology-oncology practice. [abstract]. In: Proceedings of the AACR Precision Medicine Series: Integrating Clinical Genomics and Cancer Therapy; Jun 13-16, 2015; Salt Lake City, UT. Philadelphia (PA): AACR; Clin Cancer Res 2016;22(1_Suppl):Abstract nr PR01.
    Materialart: Online-Ressource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2016
    ZDB Id: 1225457-5
    ZDB Id: 2036787-9
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 704-704
    Kurzfassung: Background: Recapitulation of the full spectrum of genomic changes driving patient tumors have resulted in increased use of patient-derived xenograft (PDX) models in studies of basic cancer biology and preclinical drug development. Given the translational potential of PDXs and limited availability of pediatric cancer models, we established a PDX program to expand the existing collection of pediatric PDXs in the community and enable pre- and post-clinical studies. Methods: PDX generation requests were integrated into clinical workflows to maximize identification of eligible patients for informed consent and tissue collection at Memorial Sloan Kettering Cancer Center. Methodologies for tissue procurement and cryopreservation were optimized to facilitate implantation into host immunodeficient mice and enable multi-institutional tissue exchange for model building. A bioinformatics pipeline was established to allow molecular validation of engrafted PDXs using a next-generation targeted gene panel (MSK-IMPACT) evaluating concordance based on acquired mutations, copy number alterations and clonal structure. Results: Between November 2016 - October 2021, 379 PDX models were developed (265 distinct models) representing 69 discrete diagnoses. Sarcoma represents the most common model type (50 discrete osteosarcoma, 20 desmoplastic small round cell tumor, 14 Ewing sarcoma, 24 rhabdomyosarcoma, 2 CIC/DUX4 and 2 BCOR-rearranged sarcoma) followed by neuroblastoma (n=35), leukemia (n=44), and Wilms tumor (n=15). While the majority of PDXs were established from recurrent or metastatic tissue, 7 paired diagnostic/pre-therapy and post-therapy or relapse models were generated. Genomic characterization of PDXs demonstrate excellent concordance and recapitulation of single nucleotide variants (90%), structural (88%) and copy number variants (94%) between patient tumor and matched PDX. Discrepancies between matched patient/PDX pairs are due to sub-clonal heterogeneity in source tumors with clonal outgrowth in the PDX. Analysis of serial PDX passages also demonstrate stable recapitulation of the genomic profile. Establishment of a diverse PDX collection allowed preclinical evaluation of 10 targeted agents across a spectrum of pediatric tumors and provided the preclinical rationale for 3 investigator-initiated pediatric clinical trials. Conclusions: Investment in the development of a phenotypically diverse and biologically faithful collection of pediatric PDX models enables the goals of precision medicine. Optimization of PDX workflows and methods has also enabled the development of a pediatric PDX consortium (PROXC - Pediatric Research in Oncology Xenografting Consortium) to further support the development of pre- and post-clinical studies for pediatric cancer. Citation Format: Filemon S. Dela Cruz, Joseph G. McCarter, Daoqi You, Nancy Bouvier, Xinyi Wang, Kristina C. Guillan, Armaan H. Siddiquee, Katie B. Souto, Hongyan Li, Teng Gao, Dominik Glodzik, Daniel Diolaiti, Neerav N. Shukla, Joachim Silber, Umeshkumar K. Bhanot, Faruk Erdem Kombak, Diego F. Coutinho, Shanita Li, Juan E. Arango Ossa, Juan S. Medina-Martinez, Michael V. Ortiz, Emily K. Slotkin, Michael D. Kinnaman, Sameer F. Sait, Tara J. O'Donohue, Marissa Mattar, Maximiliano Meneses, Michael P. LaQuaglia, Todd E. Heaton, Justin T. Gerstle, Nicola Fabbri, Chelsey M. Burke, Irene M. Rodriquez-Sanchez, Christine A. Iacobuzio-Donahue, Julia L. Glade Bender, Ryan D. Roberts, Jason T. Yustein, Nino C. Rainusso, Brian D. Crompton, Elizabeth Stewart, Alejandro Sweet-Cordero, Leanne C. Sayles, Andrika D. Thomas, Michael H. Roehrl, Elisa de Stanchina, Elli Papaemmanuil, Andrew L. Kung. Development of a patient-derived xenograft (PDX) modeling program to enable pediatric precision medicine [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 704.
    Materialart: Online-Ressource
    ISSN: 1538-7445
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2022
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 26, No. 3 ( 2008-01-20), p. 399-405
    Kurzfassung: We conducted a pediatric phase I trial of the vascular endothelial growth factor (VEGF)–neutralizing antibody bevacizumab (BV). Primary aims included estimating the maximum-tolerated dose (MTD) and determining the dose-limiting toxicities (DLTs), pharmacokinetics, and biologic effects of BV in children with cancer. Patients and Methods BV (5, 10, 15 mg/kg) was administered intravenously every 2 weeks in 28-day courses to children with refractory solid tumors. Results Twenty-one patients enrolled, 20 (median age, 13 years) were eligible, and 18 completed one course and were fully assessable for toxicity. A total of 67 courses were administered (median, three courses per patient; range, one to 16 courses). Treatment was well tolerated with no DLTs observed. Non-DLTs included infusional reaction, rash, mucositis, proteinuria, and lymphopenia. Increases in systolic and diastolic blood pressure not meeting Common Terminology Criteria for Adverse Events (CTCAEv3) pediatric-specific criteria for hypertension were observed. There was no hemorrhage or thrombosis. Growth perturbation was not detected in a limited sample over the first course. The serum exposure to BV as measured by area under the concentration-time curve (AUC) seemed to increase in proportion to dose. The median clearance of BV was 4.1 mL/d/kg (range, 3.1 to 15.5 mL/d/kg), and the median half-life was 11.8 days (range, 4.4 to 14.6 days). No objective responses were observed. Exploratory analyses on circulating endothelial mobilization and viability are consistent with the available adult data. Conclusion BV is well tolerated in children. Phase II pediatric studies of BV in combination with chemotherapy in dosing schedules similar to adults are planned.
    Materialart: Online-Ressource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Clinical Oncology (ASCO)
    Publikationsdatum: 2008
    ZDB Id: 2005181-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3104-3104
    Kurzfassung: The GAIN iCat2 Project is a collaboration between Dana-Farber/Boston Children's Cancer and Blood Disorder Center and eleven pediatric oncology centers across the United States to sequence relapsed, metastatic, difficult-to-diagnose, and high-risk extracranial solid tumors from 825 patients. The goals are to gain a better understanding of the genomic events in pediatric cancers and determine the clinical impact of matched targeted therapy. Tumor samples are sequenced on one of four gene panels performed in CLIA certified, CAP accredited laboratories, most often utilizing OncoPanel at the Center for Advanced Molecular Diagnostics, Brigham Women’s Hospital. This panel assesses SNVs and CNVs in 447 cancer-associated genes and interrogates intronic regions of 60 genes frequently involved in oncogenic translocation. For undifferentiated sarcomas and tumors in which oncogenic drivers are not identified by the gene panel, whole exome sequencing or RNA sequencing for fusion detection may be done. Interpretation of genomic results, including potential implications for diagnosis and hereditary risks, as well as assessment of possible matched targeted therapies and suitable trials are summarized in a report to the primary oncology provider. An interim analysis of tumors from the first 275 patients enrolled who have OncoPanel results was performed to assess genomic alterations most prevalent in this group of pediatric cancers. 50% (137/275) have structural alterations in their tumors with over half of these (74/137) harboring an oncogenic fusion that is the main, or only identified, driver of the cancer. These include fusions pathognomonic for diseases such as Ewing sarcoma, alveolar rhabdomyosarcoma, synovial sarcoma, desmoplastic small round cell tumors, mesenchymal chondrosarcoma, low grade fibromyxoid sarcoma, and NUT midline carcinoma. Other cases showed recurrent disruption of key tumor suppressors, such as TP53 intron 1 translocations in osteosarcoma. Lastly, more generalized, key, cancer-driving fusions were seen with rearrangements involving BRAF, NOTCH, and NTRK. In addition to aiding in diagnosis, identification of fusions has led to targeted therapy recommendations for many patients. SNVs and CNVs also helped clarify diagnoses, especially in the case of DICER1 and SMARCB1 alterations, and identified potential targeted therapies to consider for relapsed patients. Although patient recruitment is ongoing, this study shows promise for advancing our understanding and treatment of pediatric cancers and highlights the critical importance of incorporating techniques for fusion detection in tumor profiling. Citation Format: Laura B. Corson, Alma Imamovic-Tuco, Gianna R. Strand, Deirdre Reidy, Duong Doan, Mark A. Applebaum, Rochelle Bagatell, Brian D. Crompton, Steven G. DuBois, Julia L. Glade Bender, AeRang Kim, Theodore W. Laetsch, Lobin A. Lee, Neal I. Lindeman, Laura E. MacConaill, Margaret E. Macy, Luke Maese, Seth Pinches, Navin Pinto, Amit J. Sabnis, Eliezer M. Van Allen, Susan I. Vear, Daniel A. Weiser, Catherine M. Clinton, Katherine A. Janeway, Alanna J. Church. A high prevalence of chromosomal translocations as drivers in high-risk pediatric solid cancers [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3104.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2019
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Pediatric Blood & Cancer, Wiley, Vol. 66, No. 5 ( 2019-05)
    Kurzfassung: Generalized lymphatic anomaly (GLA) and Gorham–Stout disease (GSD) are rare complicated lymphatic malformations that occur in multiple body sites and are associated with significant morbidity and mortality. Treatment options have been limited, and conventional medical therapies have been generally ineffective. Emerging data suggest a role for sirolimus as a treatment option for complex lymphatic anomalies. Procedure Disease response was evaluated by radiologic imaging, quality of life (QOL), and clinical status assessments in children and young adults with GLA and GSD from a multicenter systematic retrospective review of patients treated with oral sirolimus and the prospective phase 2 clinical trial assessing the efficacy and safety of sirolimus in complicated vascular anomalies (NCT00975819). Sirolimus dosing regimens and toxicities were also assessed. Results Eighteen children and young adults with GLA ( n  = 13) or GSD ( n  = 5) received oral sirolimus. Fifteen patients (83%) had improvement in one or more aspects of their disease (QOL 78%, clinical status 72%, imaging 28%). No patients with bone involvement had progression of bone disease, and the majority had symptom or functional improvement on sirolimus. Improvement of pleural and pericardial effusion(s) occurred in 72% and 50% of affected patients; no effusions worsened on treatment. Conclusions Sirolimus appears effective at stabilizing or reducing signs/symptoms of disease in patients with GLA and GSD. Functional impairment and/or QOL improved in the majority of individuals with GLA and GSD with sirolimus treatment.
    Materialart: Online-Ressource
    ISSN: 1545-5009 , 1545-5017
    URL: Issue
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2019
    ZDB Id: 2130978-4
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 6 ( 2022-03-15), p. 1110-1127
    Kurzfassung: Kinase fusions have been identified in a growing subset of sarcomas, but a lack of preclinical models has impeded their functional analysis as therapeutic targets in the sarcoma setting. In this study, we generated models of sarcomas bearing kinase fusions and assessed their response to molecularly targeted therapy. Immortalized, untransformed human mesenchymal stem cells (HMSC), a putative cell of origin of sarcomas, were modified using CRISPR-Cas9 to harbor a RET chromosomal translocation (HMSC-RET). In parallel, patient-derived models of RET- and NTRK-rearranged sarcomas were generated. Expression of a RET fusion activated common proliferation and survival pathways and transformed HMSC cells. The HMSC-RET models displayed similar behavior and response to therapy as the patient-derived counterparts in vitro and in vivo. Capicua (CIC)-mediated suppression of negative MAPK pathway regulators was identified as a potential mechanism by which these sarcomas compensate for RET or NTRK inhibition. This CIC-mediated feedback reactivation was blocked by coinhibition of the MAPK pathway and RET or NTRK in the respective models. Importantly, the combination of RET and ERK inhibitors was more effective than single agents at blocking tumor growth in vivo. This work offers new tools and insights to improve targeted therapy approaches in kinase-addicted sarcomas and supports upfront combination therapy to prolong responses. Significance: Novel models of kinase-rearranged sarcomas show that MAPK pathway feedback activation dampens responses to tyrosine kinase inhibitors, revealing the potential of combinatorial therapies to combat these tumors.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2022
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. A59-A59
    Kurzfassung: Introduction: Molecular techniques have been incorporated into the diagnostic algorithms for many specific tumors, but the diagnostic role of next-generation sequencing has not been described at a population level. We report diagnostically relevant alterations identified by large-scale sequencing in a prospective cohort of pediatric solid tumors. Methods and Objectives: Patients are eligible for the GAIN / iCat2 study if they have a high-risk, recurrent, or refractory extracranial solid tumor diagnosed at age 30 or less and have an adequate sample for sequencing available. After informed consent, tumor was sequenced using a next-generation sequencing assay that evaluates 447 genes and includes data about sequence variants, copy number alterations, and, in selected genes, translocations. Some cases received additional sequencing via RNASeq or targeted RNA sequencing for further evaluation of fusions. Diagnostic relevance was determined according to AMP/ASCO/CAP standards and guidelines for the reporting of sequence variants in cancer. Results: 349 patients were enrolled as of December 31, 2018, and had tumor tissue successfully sequenced. These patients represent 60 unique diagnoses according to the WHO ICD-O classification. The most common single diagnoses were osteosarcoma (n=64), Ewing sarcoma (n=44), and alveolar rhabdomyosarcoma (n=32). For 349 patients, 184 (53%) had one or more genetic alterations that were diagnostically relevant, of which 159 (86%) were structural variants, 16 (8%) were sequence variants, and 9 (5%) were copy number variations. Alterations of high diagnostic relevance include CIC-DUX4 fusions in sarcoma (n=8), TP53 intron 1 rearrangements in osteosarcoma (n=26), DICER1 sequence variants in various tumors (n=7), and BCOR internal tandem duplications in clear-cell sarcoma of kidney and primitive myxoid mesenchymal tumor of infancy (n=3). Conclusions: Diagnostically relevant alterations were identified in over half of pediatric solid tumor patients evaluated. Gene fusions are particularly prevalent. These results support a role for sequencing that includes robust fusion assessment to inform diagnosis in patients with pediatric solid tumors. Citation Format: Alanna J. Church, Laura B. Corson, Alma Imamovic-Tuco, Gianna R. Strand, Dierdre Reidy, Duong Doan, Robert S. Pinches, Mark A. Applebaum, Rochelle Bagatell, Brian D. Crompton, Steven G. DuBois, Julia L. Glade Bender, Theodore W. Laetsch, Lobin A. Lee, Neal I. Lindeman, Marian H. Harris, Margaret E. Macy, Luke Maese, Navin Pinto, Amit J. Sabnis, Eliezer M. Van Allen, Susan I. Vear, Daniel A. Weiser, Catherine M. Clinton, Katherine A. Janeway. Sequencing identifies diagnostically relevant alterations in pediatric solid tumor patients [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr A59.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2020
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Pediatric Blood & Cancer, Wiley, Vol. 52, No. 5 ( 2009-05), p. 669-671
    Materialart: Online-Ressource
    ISSN: 1545-5009
    Sprache: Englisch
    Verlag: Wiley
    Publikationsdatum: 2009
    ZDB Id: 2130978-4
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz