Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 125, No. 19 ( 2015-05-07), p. 2948-2957
    Abstract: APTs as miRNA targets provide a novel molecular mechanism for how primary CLL cells escape from CD95-mediated apoptosis. Palmitoylation as a novel posttranslational modification in CLL might also impact on survival signaling, proliferation, and migration.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 4148-4148
    Abstract: CD95-mediated apoptosis is a central physiologic mechanism to eliminate e.g. auto-reactive and malignant cells. However, its mode of action remains still not fully understood. Recently, it could be shown that palmitoylation of CD95 alters its apoptotic function. However, the role, regulation and precise molecular function of palmitoylated-CD95 need to be determined. Methods and Results Applying acyl-biotin exchange (ABE) assays and click chemistry we uncovered, that CD95 is palmitoylated in weakly palmitoylated in primary CLL cells and other malignant cell types. Via mutational analysis and ABE assays we identified the palmitoylation site of CD95 and applied a mutant as control in further experiments. Interestingly, we could show that the de-palmitoylating enzymes LYPLA1 and LYPLA2 are significantly over-expressed on gene and protein level in primary CLL cells. Importantly, FLIM-FRET experiments (Fluorescence Lifetime Imaging Microscopy - Fluorescence Resonance Energy Transfer) reveal direct interactions between LYPLAs and CD95 for the first time. To uncover how LYPLA1 and LYPLA2 are regulated, we determined differentially expressed miRNAs between CLL cells and normal B cells via bead chip arrays, confirmed their expression via qPCR and checked their binding to both enzymes via luciferase reporter-assays. Over-expression of those finally four miRNAs lead to down-regulation of both enzymes in malignant cells on protein level. Moreover, our data reveal, that these miRNAs are down-regulated due to epigenetics, as these miRNAs were up-regulated after 5-AZA treatment and in DNMT knockout cells. Most remarkable, pharmacological inhibition and siRNA-mediated knockdown of LYPLA1 and LYPLA2 resulted in increased CD95 palmitoylation and subsequently in increased CD95-mediated apoptosis. Interestingly, also over-expression of miRNAs increased susceptibility towards CD95-mediated apoptosis significantly. These results show that the interaction between LYPLA1/LYPLA2 and CD95 is essential for a proper apoptotic signaling. To understand the functional relevance of the palmitoylation site during the apoptotic process, we analyzed the receptor by FACS and microscopy (FRAP, Fluorescence Recovery After Photobleaching) and revealed that the precise localization of CD95 on the plasma membrane might be responsible for the effects observed on CLL cells and other tumor cells. Conclusion Here we uncovered the complexity of CD95 signaling in CLL and malignant cells in general. We identified novel interaction partners of CD95, which account for the molecular switch between survival and apoptosis mediated by CD95. Moreover, our data reveal that susceptibility towards CD95 is dramatically altered by a molecular network of epigenetics, miRNAs and de-palmitoylating enzymes. Importantly, we can show that de-palmitoylating enzymes are drugable and their inhibition restores CD95 apoptotic signaling and improves thereby immunogenicity of CLL cells. L.P.F. and C-M.W. contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1953-1953
    Abstract: Introduction: Resistance towards CD95-mediated apoptosis is a hallmark of many different malignancies, like it is known from primary chronic lymphocytic leukemia (CLL) cells. Moreover, apoptosis mediated through CD95 is an essential mechanism to eliminate e.g. auto-reactive or virally infected cells. However, its mode of action is still not fully understood. Recently, it could be shown that palmitoylation of CD95 can influence its signaling properties. Nevertheless, the role and regulation of palmitoylated CD95 still needs to be determined. Methods and results: Previously, we could show that miR-138 and -424 are down-regulated in CLL cells. By applying luciferase reporter assays, mutations of the binding sites qRT-PCR and immunoblots after transfection of both miRs, we identified two new target genes, namely acyl protein thioesterase (APT) 1 and 2, which are under control of both miRs and thereby are significantly over-expressed in CLL cells. Interestingly, our data reveal that expression of APTs is already controlled by miRs on mRNA level. This way APT1 is regulated by miR-138 and expression of APT2 is controlled by miR-424. So far, APTs are the only enzymes known to promote de-palmitoylation. Indeed, membrane proteins are significantly less palmitoylated in CLL cells compared to normal B cells as we determined by click-chemistry, which is a non-radioactive method to determine palmitoylated proteins. Importantly, via acyl-biotin exchange assays with subsequent immunoprecipitation of CD95 and fluorescence lifetime imaging microscopy (FLIM) to Foerster resonance energy transfer (FRET) in living cells we identified APTs to directly interact with CD95 to promote de-palmitoylation, thus impairing apoptosis mediated through CD95. As proof of concept APTs were inhibited specifically by siRNAs, miRs-138/-424 or our pharmacological inhibitor Palmostatin B. Thereby we could restore CD95-mediated apoptosis in CLL cells and other cancers, pointing to a central regulatory role of APTs in CD95 apoptosis. Conclusion: The identification of the de-palmitoylation reaction of CD95 by APTs as a miRNA target provides a novel molecular mechanism how malignant cells escape from CD95-mediated apoptosis. Here, we introduce palmitoylation as a novel post-translational modification in CLL. In light of global palmitoylome studies, which show that potentially palmitoylated proteins are involved in all central cellular processes, such as protein transport, survival, migration, apoptosis and B-cell receptor signaling, this emphasizes the importance of palmitoylation and might put it on par with modifications like phosphorylation. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages