Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (3)
  • Buscher, Konrad  (3)
  • Zirlik, Andreas  (3)
Type of Medium
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (3)
Language
Years
Subjects(RVK)
  • 1
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 38, No. Suppl_1 ( 2018-05)
    Abstract: Atherosclerosis, an inflammatory disease of large arteries, is - through its clinical manifestations stroke and myocardial infarction - globally the leading cause of morbidity and mortality. The interplay of pro- and anti-inflammatory leukocytes in the aorta modulates and drives atherosclerosis. Although cells of the innate and adaptive immune system are found in atherosclerotic plaques, their phenotypic and functional diversity is poorly understood. Here, we applied single cell RNA-sequencing (scRNAseq) and mass cytometry (CyTOF) to assess leukocyte diversity in depth, thus defining an immune cell atlas in atherosclerosis. Single cell transcriptional profiling of aortic leukocytes from 20-week old chow (CD) and western diet (WD) fed Apoe -/- and Ldlr -/- mice revealed 11 phenotypically different leukocyte clusters. Atherosclerotic aortas exhibited enhanced leukocyte diversity, whilst WD further changed the abundance of leukocyte subpopulations. Gene set enrichment analysis of single cells established that multiple pathways, e.g. for lipid metabolism, proliferation, and cytokine secretion, pertained to particular leukocyte clusters. Applying a novel 35-marker CyTOF panel with metal-labelled antibodies confirmed the phenotypic diversity of aortic leukocytes. Among lymphocytes, we detected three principal B-cell subsets defined by scRNAseq, CyTOF, and flow cytometry. These B cell subsets harbor distinct surface marker expression, functional gene pathways, and ex vivo cytokine production. Finally, we used leukocyte cluster gene signatures to assess leukocyte frequencies in 121 human plaques by a transcriptomic deconvolution strategy. This approach revealed a similar immune cell complexity in human carotid plaques with a higher percentage of monocytes and macrophages. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunological mechanisms and cell-type specific pathways, and may result in novel diagnostic risk stratification tools.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1494427-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 122, No. 5 ( 2018-03-02), p. 693-700
    Abstract: The coincidence of inflammation and metabolic derangements in obese adipose tissue has sparked the concept of met-inflammation. Previous observations, however, suggest that inflammatory pathways may not ultimately cause dysmetabolism. Objective: We have revisited the relationship between inflammation and metabolism by testing the role of TRAF (tumor necrosis receptor–associated factor)-1, an inhibitory adapter of inflammatory signaling of TNF (tumor necrosis factor)-α, IL (interleukin)-1β, and TLRs (toll-like receptors). Methods and Results: Mice deficient for TRAF-1, which is expressed in obese adipocytes and adipose tissue lymphocytes, caused an expected hyperinflammatory phenotype in adipose tissue with enhanced adipokine and chemokine expression, increased leukocyte accumulation, and potentiated proinflammatory signaling in macrophages and adipocytes in a mouse model of diet-induced obesity. Unexpectedly, TRAF-1 −/− mice were protected from metabolic derangements and adipocyte growth, failed to gain weight, and showed improved insulin resistance—an effect caused by increased lipid breakdown in adipocytes and UCP (uncoupling protein)-1–enabled thermogenesis. TRAF-1–dependent catabolic and proinflammatory cues were synergistically driven by β3-adrenergic and inflammatory signaling and required the presence of both TRAF-1–deficient adipocytes and macrophages. In human obesity, TRAF-1–dependent genes were upregulated. Conclusions: Enhancing TRAF-1–dependent inflammatory pathways in a gain-of-function approach protected from metabolic derangements in diet-induced obesity. These findings identify TRAF-1 as a regulator of dysmetabolism in mice and humans and question the pathogenic role of chronic inflammation in metabolism.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1467838-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 122, No. 12 ( 2018-06-08), p. 1675-1688
    Abstract: Atherosclerosis is a chronic inflammatory disease that is driven by the interplay of pro- and anti-inflammatory leukocytes in the aorta. Yet, the phenotypic and transcriptional diversity of aortic leukocytes is poorly understood. Objective: We characterized leukocytes from healthy and atherosclerotic mouse aortas in-depth by single-cell RNA-sequencing and mass cytometry (cytometry by time of flight) to define an atlas of the immune cell landscape in atherosclerosis. Methods and Results: Using single-cell RNA-sequencing of aortic leukocytes from chow diet– and Western diet–fed Apoe −/− and Ldlr −/− mice, we detected 11 principal leukocyte clusters with distinct phenotypic and spatial characteristics while the cellular repertoire in healthy aortas was less diverse. Gene set enrichment analysis on the single-cell level established that multiple pathways, such as for lipid metabolism, proliferation, and cytokine secretion, were confined to particular leukocyte clusters. Leukocyte populations were differentially regulated in atherosclerotic Apoe −/− and Ldlr −/− mice. We confirmed the phenotypic diversity of these clusters with a novel mass cytometry 35-marker panel with metal-labeled antibodies and conventional flow cytometry. Cell populations retrieved by these protein-based approaches were highly correlated to transcriptionally defined clusters. In an integrated screening strategy of single-cell RNA-sequencing, mass cytometry, and fluorescence-activated cell sorting, we detected 3 principal B-cell subsets with alterations in surface markers, functional pathways, and in vitro cytokine secretion. Leukocyte cluster gene signatures revealed leukocyte frequencies in 126 human plaques by a genetic deconvolution strategy. This approach revealed that human carotid plaques and microdissected mouse plaques were mostly populated by macrophages, T-cells, and monocytes. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. Conclusions: The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type–specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1467838-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages