Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    EDP Sciences ; 2018
    In:  EPJ Web of Conferences Vol. 183 ( 2018), p. 02042-
    In: EPJ Web of Conferences, EDP Sciences, Vol. 183 ( 2018), p. 02042-
    Abstract: Testing ceramics at high strain rates presents many experimental diffsiculties due to the brittle nature of the material being tested. When using a split Hopkinson pressure bar (SHPB) for high strain rate testing, adequate time is required for stress wave effects to dampen out. For brittle materials, with small strains to failure, it is difficult to satisfy this constraint. Because of this limitation, there are minimal data (if any) available on the stiffness and tensile strength of ceramics at high strain rates. Recently, a new image-based inertial impact (IBII) test method has shown promise for analysing the high strain rate behaviour of brittle materials. This test method uses a reflected compressive stress wave to generate tensile stress and failure in an impacted specimen. Throughout the propagation of the stress wave, full-field displacement measurements are taken, from which strain and acceleration fields are derived. The acceleration fields are then used to reconstruct stress information and identify the material properties. The aim of this study is to apply the IBII test methodology to analyse the stiffness and strength of ceramics at high strain rates. The results show that it is possible to identify the elastic modulus and tensile strength of tungsten carbide at strain rates on the order of 1000 s-1 . For a tungsten carbide with 13% cobalt binder the elastic modulus was identified as 516 GPa and the strength was 1400 MPa. Future applications concern boron carbide and sapphire, for which limited data exist in high rate tension.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 2595425-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: EPJ Web of Conferences, EDP Sciences, Vol. 183 ( 2018), p. 02041-
    Abstract: Testing fibre composites off-axis has been used extensively to explore shear/tension coupling effects. However, off-axis testing at strain rates above 500 s -1 is challenging with a split Hopkinson bar apparatus. This is primarily due to the effects of inertia, which violate the assumption of stress equilibrium necessary to infer stress and strain from point measurements taken on the bars. Therefore, there is a need to develop new high strain rate test methods that do not rely on the assumptions of split Hopkinson bar analysis. Recently, a new image-based inertial impact test has been used to successfully identify the transverse modulus and tensile strength of a unidirectional composite at strain rates on the order of 2000 -1 . The image-based inertial impact test method uses a reflected compressive stress wave to generate tensile stress and failure in an impacted specimen. Thus, the purpose of this study is to modify the image-based inertial impact test method to investigate the high strain rate properties of fibre composites using an off-axis configuration. For an off-axis specimen, a combined shear/tension or shear/compression stress state will be obtained. Throughout the propagation of the stress wave, full-field displacement measurements are taken. Strain and acceleration fields are then derived from the displacement fields. The kinematic fields are then processed with the virtual fields method (VFM) to reconstruct stress averages and identify the in-plane stiffness components G 12 and E 22 .
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 2595425-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    EDP Sciences ; 2018
    In:  EPJ Web of Conferences Vol. 183 ( 2018), p. 02051-
    In: EPJ Web of Conferences, EDP Sciences, Vol. 183 ( 2018), p. 02051-
    Abstract: The behavior and failure mechanisms of materials often change at high strain rates ( 〉 100 1/s) when compared with their quasi-static response. These differences are critical when designing structures or components that will be subjected to impact or blast loads. The recent progress in ultra-high speed imaging and full-field measurement techniques provides a unique opportunity to improve the quality of high strain rate test data. The objective of the current work is to design and validate an experimental technique to identify the elastoplastic material properties of metals. The methodology uses an ultra-high speed camera and the grid method to obtain time-resolved full-field deformation data as impact induced stress waves propagate in a sample. The virtual fields method is then used to inversely identify the plastic properties of the specimen. The results for five aluminum 6082-T6 impacted at 50 m/s are presented.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 2595425-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: EPJ Web of Conferences, EDP Sciences, Vol. 183 ( 2018), p. 02032-
    Abstract: The present work aims at identifying an elastic-viscoplastic material behaviour over a wide strain and strain-rate range (up to 0.1 and 1000 s -1 respectively), using the so-called Virtual Fields Method. To define the experimental campaign, a design process has been set. This relies on the numerical optimization of the setup - notably the specimen shape ? with respects to user-defined criteria. Finally, the selected configuration ensures an accurate and robust identification of material parameters.
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 2595425-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: EPJ Web of Conferences, EDP Sciences, Vol. 183 ( 2018), p. 04014-
    Abstract: Bone cement is widely used for the fixation of orthopaedic implants. It is a multi-component material that consists of a PMMA base with a small proportion of (usually ceramic) radiopacifier to enable the cement to be observed by X-ray. Bone cement is formed through an exothermic reaction in which a powder of pre-polymerised beads of PMMA reacts with MMA monomer. The resulting polymer microstructure consists of PMMA beads in a matrix of newly formed PMMA containing radiopacifier particles. In service, bone cement can experience deformation over a range of strain rates, from the lower end in normal gait to 100s of s -1 in the case of falls or impacts. In the current study, it is hypothesised that the response of homogeneous (clear) PMMA to high strain rates will be different to that of bone cement due to the microstructural differences. There have been very few studies on this topic in the past, mostly because of the difficulty involved in adapting the Hopkinson bar protocol to this material, particularly for dynamic tension. The objective of this paper is to present new results on the stiffness and damping of bone cement at strain rates in the range of 100 s -1 , and to compare the data with that obtained on clear PMMA. The technique employed here to measure the mechanical properties of both commercial grade PMMA and bone cement is a new image-based DMTA method recently proposed by Seghir and Pierron (Seghir, Pierron, Exp. Mech., 2018). This allows for the measurement of the complex modulus over a range of temperatures and strain rates (100s of s -1 ). The method relies on imaging the deformation of the specimen bearing a printed grid using a Shimadzu HPV-X camera at up to 5 million frames per second. This allows for the time-resolved displacements to be measured, leading to fields of strain and acceleration, the latter being used to derive stress information to build up stress-strain curves. The methodology is described in more details in www.photodyn.org .
    Type of Medium: Online Resource
    ISSN: 2100-014X
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 2595425-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages