Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Comparat, J.  (15)
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 647 ( 2021-3), p. A4-
    Abstract: Aims. We examine the X-ray, optical, and radio properties of the member clusters of a new supercluster discovered during the SRG/eROSITA Performance Verification phase. Methods. We analyzed the 140 deg 2 eROSITA Final Equatorial Depth Survey (eFEDS) field observed during the Performance Verification phase to a nominal depth of about 2.3 ks. In this field, we detect a previously unknown supercluster consisting of a chain of eight galaxy clusters at z ~ 0.36. The redshifts of these members were determined through Hyper Suprime-Cam photometric measurements. We examined the X-ray morphological and dynamical properties, gas, and total mass out to R 500 of the members and compare these with the same properties of the general population of clusters detected in the eFEDS field. We further investigated the gas in the bridge region between the cluster members for a potential WHIM detection. We also used radio follow-up observations with LOFAR and uGMRT to search for diffuse emission and constrain the dynamic state of the system. Results. We do not find significant differences between the morphological parameters and properties of the intra-cluster medium of the clusters embedded in this large-scale filament and those of the eFEDS clusters. We also provide upper limits on the electron number density and mass of the warm-hot intergalactic medium as provided by the eROSITA data. These limits are consistent with previously reported values for the detections in the vicinity of clusters of galaxies. In LOFAR and uGMRT follow-up observations of the northern part of this supercluster, we find two new radio relics and a radio halo that are the result of major merger activity in the system. Conclusions. These early results show the potential of eROSITA to probe large-scale structures such as superclusters and the properties of their members. Our forecasts show that we will be able to detect about 450 superclusters, with approximately 3000 member clusters located in the eROSITA_DE region at the final eROSITA all-sky survey depth, enabling statistical studies of the properties of superclusters and their constituents embedded in the cosmic web.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A2-
    Abstract: Aims. The eROSITA Final Equatorial-Depth Survey has been carried out during the performance verification phase of the Spectrum-Roentgen-Gamma/eROSITA telescope and was completed in November 2019. This survey is designed to provide the first eROSITA-selected sample of clusters and groups and to test the predictions for the all-sky survey in the context of cosmological studies with clusters of galaxies. Methods. In the area of ~140 square degrees covered by eFEDS, 542 candidate clusters and groups of galaxies were detected as extended X-ray sources with the eSASS source detection algorithm. We performed imaging and spectral analysis of the 542 cluster candidates with eROSITA X-ray data and studied the properties of the sample. Results. We provide the catalog of candidate galaxy clusters and groups detected by eROSITA in the eFEDS field down to a flux of ~10 –14 erg s –1 cm –2 in the soft band (0.5 – 2 keV) within 1’. The clusters are distributed in the redshift range ɀ = [0.01, 1.3] with a median redshift ɀ median = 0.35. With eROSITA X-ray data, we measured the temperature of the intracluster medium within two radii, 300 kpc and 500 kpc, and constrained the temperature with 〉 2 σ confidence level for ~1/5 (102 out of 542) of the sample. The average temperature of these clusters is ~2 keV. Radial profiles of flux, luminosity, electron density, and gas mass were measured from the precise modeling of the imaging data. The selection function, the purity, and the completeness of the catalog are examined and discussed in detail. The contamination fraction is ~1/5 in this sample and is dominated by misidentified point sources. The X-ray luminosity function of the clusters agrees well with the results obtained from other recent X-ray surveys. We also find 19 supercluster candidates in this field, most of which are located at redshifts between 0.1 and 0.5, including one cluster at ɀ ~ 0.36 that was presented previously. Conclusions. The eFEDS cluster and group catalog at the final eRASS equatorial depth provides a benchmark proof of concept for the eROSITA All-Sky Survey extended source detection and characterization. We confirm the excellent performance of eROSITA for cluster science and expect no significant deviations from our pre-launch expectations for the final all-sky survey.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A3-
    Abstract: Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg 2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over the entire sky. Aims. This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift. Methods. To identifyy the counterparts, we combined the results from two independent methods ( NWAY and ASTROMATCH ), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts. Results. Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main sample and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available. Conclusions. This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 631 ( 2019-11), p. A175-
    Abstract: We present the brightest cluster galaxies (BCGs) catalog for SPectroscoic IDentification of eROSITA Sources (SPIDERS) DR14 cluster program value-added catalog. We list the 416 BCGs identified as part of this process, along with their stellar mass, star formation rates (SFRs), and morphological properties. We identified the BCGs based on the available spectroscopic data from SPIDERS and photometric data from SDSS. We computed stellar masses and SFRs of the BCGs on the basis of SDSS, WISE, and GALEX photometry using spectral energy distribution fitting. Morphological properties for all BCGs were derived by Sersic profile fitting using the software package SIGMA in different optical bands ( g , r , i ). We combined this catalog with the BCGs of galaxy groups and clusters extracted from the deeper AEGIS, CDFS, COSMOS, XMM-CFHTLS, and XMM-XXL surveys to study the stellar mass–halo mass relation using the largest sample of X-ray groups and clusters known to date. This result suggests that the mass growth of the central galaxy is controlled by the hierarchical mass growth of the host halo. We find a strong correlation between the stellar mass of BCGs and the mass of their host halos. This relation shows no evolution since z  ∼ 0.65. We measure a mean scatter of 0.21 and 0.25 for the stellar mass of BCGs in a given halo mass at low (0.1  〈   z   〈  0.3) and high (0.3  〈   z   〈  0.65) redshifts, respectively. We further demonstrate that the BCG mass is covariant with the richness of the host halos in the very X-ray luminous systems. We also find evidence that part of the scatter between X-ray luminosity and richness can be reduced by considering stellar mass as an additional variable.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 636 ( 2020-04), p. A97-
    Abstract: Aims. We look to provide a detailed description of the SPectroscopic IDentification of ERosita Sources (SPIDERS) survey, an SDSS-IV programme aimed at obtaining spectroscopic classification and redshift measurements for complete samples of sufficiently bright X-ray sources. Methods. We describe the SPIDERS X-ray Point Source Spectroscopic Catalogue, considering its store of 11 092 observed spectra drawn from a parent sample of 14 759 ROSAT and XMM sources over an area of 5129 deg 2 covered in SDSS-IV by the eBOSS survey. Results. This programme represents the largest systematic spectroscopic observation of an X-ray selected sample. A total of 10 970 (98.9%) of the observed objects are classified and 10 849 (97.8%) have secure redshifts. The majority of the spectra (10 070 objects) are active galactic nuclei (AGN), 522 are cluster galaxies, and 294 are stars. Conclusions. The observed AGN redshift distribution is in good agreement with simulations based on empirical models for AGN activation and duty cycle. Forming composite spectra of type 1 AGN as a function of the mass and accretion rate of their black holes reveals systematic differences in the H-beta emission line profiles. This study paves the way for systematic spectroscopic observations of sources that are potentially to be discovered in the upcoming eROSITA survey over a large section of the sky.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature, Springer Science and Business Media LLC, Vol. 592, No. 7856 ( 2021-04-29), p. 704-707
    Abstract: Quasi-periodic eruptions (QPEs) are very-high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes of galactic nuclei 1,2 . It is currently unknown what triggers these events, how long they last and how they are connected to the physical properties of the inner accretion flows. Previously, only two such sources were known, found either serendipitously or in archival data 1,2 , with emission lines in their optical spectra classifying their nuclei as hosting an actively accreting supermassive black hole 3,4 . Here we report observations of QPEs in two further galaxies, obtained with a blind and systematic search of half of the X-ray sky. The optical spectra of these galaxies show no signature of black hole activity, indicating that a pre-existing accretion flow that is typical of active galactic nuclei is not required to trigger these events. Indeed, the periods, amplitudes and profiles of the QPEs reported here are inconsistent with current models that invoke radiation-pressure-driven instabilities in the accretion disk 5–9 . Instead, QPEs might be driven by an orbiting compact object. Furthermore, their observed properties require the mass of the secondary object to be much smaller than that of the main body 10 , and future X-ray observations may constrain possible changes in their period owing to orbital evolution. This model could make QPEs a viable candidate for the electromagnetic counterparts of so-called extreme-mass-ratio inspirals 11–13 , with considerable implications for multi-messenger astrophysics and cosmology 14,15 .
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 671 ( 2023-03), p. A57-
    Abstract: Context. The characterization of the dynamical state of galaxy clusters is key to studying their evolution, evaluating their selection, and using them as a cosmological probe. In this context, the offsets between different definitions of the center have been used to estimate the cluster disturbance. Aims. Our goal is to study the distribution of the offset between the X-ray and optical centers in clusters of galaxies. We study the offset for clusters detected by the extended ROentgen Survey with an Imaging Telescope Array (eROSITA) on board the Spectrum-Roentgen-Gamma (SRG) observatory. We aim to connect observations to predictions by hydrodynamical simulations and N -body models. We assess the astrophysical effects affecting the displacements. Methods. We measured the offset for clusters observed in the eROSITA Final Equatorial-Depth Survey (eFEDS) and the first eROSITA all-sky survey (eRASS1). We focus on a subsample of 87 massive eFEDS clusters at low redshift, with M 500c 〉 1×10 14   M ⊙ and 0.15 〈 z 〈 0.4. We compared the displacements in such sample to those predicted by the TNG and the Magneticum simulations. We additionally link the observations to the offset parameter X off measured for dark matter halos in N -body simulations, using the hydrodynamical simulations as a bridge. Results. We find that, on average, the eFEDS clusters show a smaller offset compared to eRASS1 because the latter contains a larger fraction of massive and disturbed structures. We measured an average offset of Δ X−O  = 76.3 −27.1 +30.1 kpc, when focusing on the subsample of 87 eFEDS clusters. This is in agreement with the predictions from TNG and Magneticum, and the distribution of X off from dark matter only (DMO) simulations. However, the tails of the distributions are different. Using Δ X − O to classify relaxed and disturbed clusters, we measured a relaxed fraction of 31% in the eFEDS subsample. Finally, we found a correlation between the offset measured on hydrodynamical simulations and X off measured on their parent dark-matter-only run and we calibrated the relation between them. Conclusions. We conclude that there is good agreement between the offsets measured in eROSITA data and the predictions from simulations. Baryonic effects cause a decrement (increment) in the low (high) offset regime compared to the X off distribution from dark matter-only simulations. The offset– X off relation provides an accurate prediction of the true X off distribution in Magneticum and TNG. It allows for the offsets to be introduced in a cosmological context with a new method in order to marginalize over selection effects related to the cluster dynamical state.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A1-
    Abstract: Context. The eROSITA X-ray telescope on board the Spectrum-Poentgen-Gamma (SPG) observatory combines a large field of view and a large collecting area in the energy range between ~0.2 and ~8.0 keV. This gives the telescope the capability to perform uniform scanning observations of large sky areas. Aims. SRG/eROSITA performed scanning observations of the ~140 square degree eROSITA Final Equatorial Depth Survey field (the eFEDS field) as part of its performance verification phase ahead of the planned four year of all-sky scanning operations. The observing time of eFEDS was chosen to slightly exceed the depth expected in an equatorial field after the completion of the all - sky survey. While verifying the capability of eROSITA to perform large-area uniform surveys and saving as a test and training dataset to establish calibration and data analysis procedures, the eFEDS survey also constitutes the largest contiguous soft X-ray survey at this depth to date, supporting a range of early eROSITA survey science investigations. Here we (i) present a catalogue of detected X-ray sources in the eFEDS field providing information about source positions and extent, as well as fluxes in multiple energy bands, and (ii) document the suite of tools and procedures developed for eROSITA data processing and analysis, which were validated and optimised by the eFEDS work. Methods. The data were fed through a standard data processing pipeline, which appltes X-ray event calibration and provides a set of standard calibrated data products. A mutiti-stage source detection procedure, building in part on experience from XMM-Newton, was optimised and calibrated by performing realistic simulations of the eROSITA eFEDS observations. Source fluxes were computed in multiple standard energy bands by forced point source fitting and aperture photometry. We cross-matched the eROSITA eFEDS source catalogue with previous XMM-ATLAS observations, which confirmed the excellentt agreement of the eROSITA and XMM-ATLAS source fluxes. Astrometric corrections were performed by cross-matching the eROSITA source positions with an optical reference catalogue of quasars. Results. We present a primary catalogue of 27 910 X-ray sources (542 of which are significantly spatially extended) detected in the 0.2–2.3 keV energy range with detection likelihoods ≥6, corresponding to a (point source) flux limit of 6.5 × 10 –15 erg cm –2 s –1 in the 0.5–2.0 keV energy band (80% completeness). A supplementary catalogue contains 4774 low-significance source candidates with detection likelihoods between 5 and 6. In addition, a hard-band sample of 246 sources detected in the energy range 22.3–5.0 keV above a detection likelihood of 10 is provided. In an appendix, we finally describe the dedicated data analysis software package, the eROSITA calibration database, and the standard calibrated data products.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 647 ( 2021-3), p. A5-
    Abstract: Context. High-redshift quasars signpost the early accretion history of the Universe. The penetrating nature of X-rays enables a less absorption-biased census of the population of these luminous and persistent sources compared to optical/near-infrared colour selection. The ongoing SRG/eROSITA X-ray all-sky survey offers a unique opportunity to uncover the bright end of the high- z quasar population and probe new regions of colour parameter space. Aims. We searched for high- z quasars within the X-ray source population detected in the contiguous ~140 deg 2 field observed by eROSITA during the performance verification phase. With the purpose of demonstrating the unique survey science capabilities of eROSITA, this field was observed at the depth of the final all-sky survey. The blind X-ray selection of high-redshift sources in a large contiguous, near-uniform survey with a well-understood selection function can be directly translated into constraints on the X-ray luminosity function (XLF), which encodes the luminosity-dependent evolution of accretion through cosmic time. Methods. We collected the available spectroscopic information in the eFEDS field, including the sample of all currently known optically selected z 〉 5.5 quasars and cross-matched secure Legacy DR8 counterparts of eROSITA-detected X-ray point-like sources with this spectroscopic sample. Results. We report the X-ray detection of eFEDSU J083644.0+005459, an eROSITA source securely matched to the well-known quasar SDSS J083643.85+005453.3 ( z = 5.81). The soft X-ray flux of the source derived from eROSITA is consistent with previous Chandra observations. The detection of SDSS J083643.85+005453.3 allows us to place the first constraints on the XLF at z 〉 5.5 based on a secure spectroscopic redshift. Compared to extrapolations from lower-redshift observations, this favours a relatively flat slope for the XLF at z ~ 6 beyond L * , the knee in the luminosity function. In addition, we report the detection of the quasar with LOFAR at 145 MHz and ASKAP at 888 MHz. The reported flux densities confirm a spectral flattening at lower frequencies in the emission of the radio core, indicating that SDSS J083643.85+005453.3 could be a (sub-) gigahertz peaked spectrum source. The inferred spectral shape and the parsec-scale radio morphology of SDSS J083643.85+005453.3 indicate that it is in an early stage of its evolution into a large-scale radio source or confined in a dense environment. We find no indications for a strong jet contribution to the X-ray emission of the quasar, which is therefore likely to be linked to accretion processes. Conclusions. Our results indicate that the population of X-ray luminous AGNs at high redshift may be larger than previously thought. From our XLF constraints, we make the conservative prediction that eROSITA will detect ~90 X-ray luminous AGNs at redshifts 5.7 〈 z 〈 6.4 in the full-sky survey (De+RU). While subject to different jet physics, both high-redshift quasars detected by eROSITA so far are radio-loud; a hint at the great potential of combined X-ray and radio surveys for the search of luminous high-redshift quasars.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 661 ( 2022-5), p. A10-
    Abstract: Aims . The eROSITA Final Equatorial-Depth Survey (eFEDS), executed during the performance verification phase of the Spectrum-Roentgen-Gamma (SRG)/eROSITA telescope, was completed in November 2019. One of the science goals of this survey is to demonstrate the ability of eROSITA to detect samples of clusters and groups at the final depth of the eROSITA all-sky survey. Methods . Because of the sizeable (≈26″ HEW FOV average) point-spread function of eROSITA, high-redshift clusters of galaxies or compact nearby groups hosting bright active galactic nuclei (AGN) can be misclassified as point sources by the source detection algorithms. A total of 346 galaxy clusters and groups in the redshift range of 0.1 〈 z 〈 1.3 were identified based on their red sequenc in the eFEDS point source catalog. Results . We examine the multiwavelength properties of these clusters and groups to understand the potential biases in our selection process and the completeness of the extent-selected sample. We find that the majority of the clusters and groups in the point source sample are indeed underluminous and compact compared to the extent-selected sample. Their faint X-ray emission, well below the flux limit of the extent-selected eFEDS clusters, and their compact X-ray emission are likely to be the main reason for this misclassification. In the sample, we confirm that 10% of the sources host AGN in their brightest cluster galaxies (BCGs) through optical spectroscopy and visual inspection. By studying their X-ray, optical, infrared, and radio properties, we establish a method for identifying clusters and groups that host AGN in their BCGs. We successfully test this method on the current point source catalog through the Sloan Digital Sky Survey optical spectroscopy and find eight low-mass clusters and groups with active radio-loud AGN that are particularly bright in the infrared. They include eFEDS J091437.8+024558, eFEDS J083520.1+012516, and eFEDS J092227.1+043339 at redshifts 0.3−0.4. Conclusions . This study helps us to characterize and understand our selection process and assess the completeness of the eROSITA extent-selected samples. The method we developed will be used to identify high-redshift clusters, AGN-dominated groups, and low-mass clusters that are misclassified in the future eROSITA all-sky survey point source catalogs.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages