Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 129, No. 4 ( 2014-01-28), p. 451-462
    Abstract: β1-2-adrenergic receptors (AR) are key regulators of cardiac contractility and remodeling in response to catecholamines. β3-AR expression is enhanced in diseased human myocardium, but its impact on remodeling is unknown. Methods and Results— Mice with cardiac myocyte-specific expression of human β3-AR (β3-TG) and wild-type (WT) littermates were used to compare myocardial remodeling in response to isoproterenol (Iso) or Angiotensin II (Ang II). β3-TG and WT had similar morphometric and hemodynamic parameters at baseline. β3-AR colocalized with caveolin-3, endothelial nitric oxide synthase (NOS) and neuronal NOS in adult transgenic myocytes, which constitutively produced more cyclic GMP, detected with a new transgenic FRET sensor. Iso and Ang II produced hypertrophy and fibrosis in WT mice, but not in β3-TG mice, which also had less re-expression of fetal genes and transforming growth factor β1. Protection from Iso-induced hypertrophy was reversed by nonspecific NOS inhibition at low dose Iso, and by preferential neuronal NOS inhibition at high-dose Iso. Adenoviral overexpression of β3-AR in isolated cardiac myocytes also increased NO production and attenuated hypertrophy to Iso and phenylephrine. Hypertrophy was restored on NOS or protein kinase G inhibition. Mechanistically, β3-AR overexpression inhibited phenylephrine-induced nuclear factor of activated T-cell activation. Conclusions— Cardiac-specific overexpression of β3-AR does not affect cardiac morphology at baseline but inhibits the hypertrophic response to neurohormonal stimulation in vivo and in vitro, through a NOS-mediated mechanism. Activation of the cardiac β3-AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodeling.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2014
    detail.hit.zdb_id: 1466401-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 194, No. 4 ( 2015-02-15), p. 1874-1881
    Abstract: Nucleotides are released in the heart under pathological conditions, but little is known about their contribution to cardiac inflammation. The present study defines the P2Y4 nucleotide receptor, expressed on cardiac microvascular endothelial cells and involved in postnatal heart development, as an important regulator of the inflammatory response to cardiac ischemia. P2Y4-null mice displayed smaller infarcts in the left descending artery ligation model, as well as reduced neutrophil infiltration and fibrosis. Gene profiling identified inter alia endothelin-1 (ET-1) as one of the target genes of P2Y4 in ischemic heart. The reduced level of ET-1 was correlated with reduction of microvascular hyperpermeability, neutrophil infiltration, and endothelial adhesion molecule expression, and it could be explained by the decreased number of endothelial cells in P2Y4-null mice. Expression analysis of metalloproteinases and their tissue inhibitors in ischemic heart revealed reduced expression of matrix metalloproteinase (MMP)-9, reported to be potentially regulated by ET-1, and MMP-8, considered as neutrophil collagenase, as well as reduction of tissue inhibitor of MMP-1 and tissue inhibitor of MMP-4 in P2Y4-null mice. Reduction of cardiac permeability and neutrophil infiltration was also observed in P2Y4-null mice in LPS-induced inflammation model. Protection against infarction resulting from loss of P2Y4 brings new therapeutic perspectives for cardiac ischemia and remodeling.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2015
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: ESC Heart Failure, Wiley, Vol. 7, No. 3 ( 2020-06), p. 920-932
    Abstract: The abundance of beta 3‐adrenergic receptors (β3‐ARs) is upregulated in diseased human myocardium. We previously showed that cardiac‐specific expression of β3‐AR inhibits the hypertrophic response to neurohormonal stimulation. Here, we further analysed signalling pathways involved in the anti‐hypertrophic effect of β3‐AR. Methods and results In vitro hypertrophic responses to phenylephrine (PE) were analysed in neonatal rat ventricular myocytes (NRVM) infected with a recombinant adenovirus expressing the human β3‐AR (AdVhβ3). We confirmed results in mice with cardiomyocyte‐specific moderate expression of human β3‐AR (β3‐TG) and wild‐type (WT) littermates submitted to thoracic transverse aortic constriction (TAC) for 9 weeks. We observed a colocalization of β3‐AR with the AMP‐activated protein kinase (AMPK) both in neonatal rat and in adult mouse cardiomyocytes. Treatment of NRVM with PE induced hypertrophy and a decrease in phosphorylation of Thr172‐AMPK (/2, P = 0.0487) and phosphorylation of Ser79‐acetyl‐CoA carboxylase (ACC) (/2.6, P = 0.0317), inducing an increase in phosphorylated Ser235/236 S6 protein (×2.5, P = 0.0367) known to be involved in protein synthesis. These effects were reproduced by TAC in WT mice but restored to basal levels in β3‐AR expressing cells/mice. siRNA targeting of AMPK partly abrogated the anti‐hypertrophic effect of β3‐AR in response to PE in NRVM. Concomitant with hypertrophy, autophagy was decreased by PE, as measured by microtubule‐associated protein 1 light chain 3 (LC3)‐II/LC3‐I ratio (/2.6, P = 0.0010) and p62 abundance (×3, P = 0.0016) in NRVM or by TAC in WT mice (LC3‐II/LC3‐I ratio: /5.4, P = 0.0159), but preserved in human β3‐AR expressing cells and mice, together with reduced hypertrophy. Conclusions Cardiac‐specific moderate expression of β3‐AR inhibits the hypertrophic response in part through AMPK activation followed by inhibition of protein synthesis and preservation of autophagy. Activation of the cardiac β3‐AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodelling.
    Type of Medium: Online Resource
    ISSN: 2055-5822 , 2055-5822
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2814355-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 9 ( 2022-3-14)
    Abstract: Activation of the renin-angiotensin-aldosterone system (RAAS) plays a critical role in the development of hypertension. Published evidence on a putative “memory effect” of AngII on the vascular components is however scarce. Aim To evaluate the long-term effects of transient exposure to AngII on the mouse heart and the arterial tissue. Methods Blood pressure, cardiovascular tissue damage and remodeling, and systemic oxidative stress were evaluated in C57/B6/J mice at the end of a 2-week AngII infusion ( AngII ); 2 and 3 weeks after the interruption of a 2-week AngII treatment ( AngII + 2W and AngII + 3W ; so-called “memory” conditions) and control littermate ( CTRL ). RNAseq profiling of aortic tissues was used to identify potential key regulated genes accounting for legacy effects on the vascular phenotype. RNAseq results were validated by RT-qPCR and immunohistochemistry in a reproduction cohort of mice. Key findings were reproduced in a homotypic cell culture model. Results The 2 weeks AngII infusion induced cardiac hypertrophy and aortic damage that persisted beyond AngII interruption and despite blood pressure normalization, with a sustained vascular expression of ICAM1, infiltration by CD45+ cells, and cell proliferation associated with systemic oxidative stress. RNAseq profiling in aortic tissue identified robust Acta2 downregulation at transcript and protein levels (α-smooth muscle actin) that was maintained beyond interruption of AngII treatment. Among regulators of Acta2 expression, the transcription factor Myocardin ( Myocd ), exhibited a similar expression pattern. The sustained downregulation of Acta2 and Myocd was associated with an increase in H3K27me3 in nuclei of aortic sections from mice in the “memory” conditions. A sustained downregulation of ACTA2 and MYOCD was reproduced in the cultured human aortic vascular smooth muscle cells upon transient exposure to Ang II. Conclusion A transient exposure to Ang II produces prolonged vascular remodeling with robust ACTA2 downregulation, associated with epigenetic imprinting supporting a “memory” effect despite stimulus withdrawal.
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2781496-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 38, No. 10 ( 2018-10), p. 2345-2357
    Abstract: Members of the microRNA (miR)-199a family, namely miR-199a-5p and miR-199a-3p, have been recently identified as potential regulators of cardiac homeostasis. Also, upregulation of miR-199a expression in cardiomyocytes was reported to influence endothelial cells. Whether miR-199a is expressed by endothelial cells and, if so, whether it directly regulates endothelial function remains unknown. We investigate the implication of miR-199a products on endothelial function by focusing on the NOS (nitric oxide synthase)/NO pathway. Approach and Results— Bovine aortic endothelial cells were transfected with specific miRNA inhibitors (locked-nucleic acids), and potential molecular targets identified with prediction algorithms were evaluated by Western blot or immunofluorescence. Ex vivo experiments were performed with mice treated with antagomiRs targeting miR-199a-3p or -5p. Isolated vessels and blood were used for electron paramagnetic resonance or myograph experiments. eNOS (endothelial NO synthase) activity (through phosphorylations Ser1177/Thr495) is increased by miR-199a-3p/-5p inhibition through an upregulation of the PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B) and calcineurin pathways. SOD1 (superoxide dismutase 1) and PRDX1 (peroxiredoxin 1) upregulation was also observed in locked-nucleic acid–treated cells. Moreover, miR-199a-5p controls angiogenesis and VEGFA (vascular endothelial growth factor A) production and upregulation of NO-dependent relaxation were observed in vessels from antagomiR-treated mice. This was correlated with increased circulated hemoglobin-NO levels and decreased superoxide production. Angiotensin infusion for 2 weeks also revealed an upregulation of miR-199a-3p/-5p in vascular tissues. Conclusions— Our study reveals that miR-199a-3p and miR-199a-5p participate in a redundant network of regulation of the NOS/NO pathway in the endothelium. We highlighted that inhibition of miR-199a-3p and -5p independently increases NO bioavailability by promoting eNOS activity and reducing its degradation, thereby supporting VEGF-induced endothelial tubulogenesis and modulating vessel contractile tone.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1494427-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages