Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Eldfors, Samuli  (4)
  • Majumder, Muntasir Mamun  (4)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 4580-4580
    Kurzfassung: Samples from recurrent, treatment-refractory cancers are rarely available, but would be valuable in understanding the molecular drivers of drug resistance. In leukemias, consecutive samples are readily available during treatment. Hence, we explored here the progression of adult acute myeloid leukemias (AML) by serial sampling and by integrating data from multiple platforms. Next-generation exome and RNA sequencing, and phosphoproteomic data were combined with comprehensive 240 cancer drug sensitivity and resistance testing (DSRT) of leukemic blasts ex-vivo before and after clinical relapse. The data were generated in an experimental diagnostic setting, with intent to improve and personalize treatment of patients with recurrent AML. A 54-year old AML-M5 patient with a FLT-3-ITD mutation and a normal karyotype was monitored by serial sampling. The patient was initially refractory to three consecutive high-dose induction treatments and had limited therapy options. AML blasts from the patient were screened with the DSRT platform. Results implied that the blast cells were 710-times more sensitive to temsirolimus and other rapamycin analogs as compared to normal BM cells, and showed a 1100-fold increased sensitivity to dasatinib. Proteomic analysis showed high phosphorylation of several signaling molecules, such as the insulin receptor and mTOR. Sequencing identified WT1 mutations and a NUP98-NSD1 fusion transcript, an infrequent event associated with poor prognosis in AML. Based on the DSRT results, the patient received compassionate off-label treatment with dasatinib, sunitinib and temsirolimus, resulting in a remarkable clinical remission, normalization of blast counts and a rapid recovery of neutrophil counts as a sign of selective elimination of the leukemic cells. The patient relapsed 4 weeks later, and at this point a new DSRT assay was performed, which showed the blast cells to be completely resistant to temsirolimus and less sensitive to dasatinib ex vivo. Consistent with this drug sensitivity profile was a genomic evolution of a distinct AML subclone with new changes, such as NF1 mutation and a microdeletion of the LEF1 gene, which were not observed in the pre-treatment sample. Taken together, we have demonstrated, how molecular profiling and functional ex vivo drug sensitivity and resistance data can be used to individually optimize patient treatment. Remission was achieved in a patient with advanced, treatment-refractory AML. Serial sampling from human AML patients coupled with molecular profiling and drug sensitivity testing may shed light on clonal progression of disease, and the molecular events underlying drug response. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 4580. doi:1538-7445.AM2012-4580
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2012
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 288-288
    Kurzfassung: Abstract 288 Introduction: Recent genomic analyses of acute myeloid leukemia (AML) patients have provided new information on mutations contributing to the disease onset and progression. However, the genomic changes are often complex and highly diverse from one patient to another and often not actionable in clinical care. To rapidly identify novel patient-specific therapies, we developed a high-throughput drug sensitivity and resistance testing (DSRT) platform to experimentally validate therapeutic options for individual patients with relapsed AML. By integrating the results with exome and transcriptome sequencing plus proteomic analysis, we were able to define specific drug-sensitive subgroups of patients and explore predictive biomarkers. Methods: Ex vivo DSRT was implemented for 29 samples from 16 adult AML patients at the time of relapse and chemoresistance and from 5 healthy donors. Fresh mononuclear cells from bone marrow aspirates ( 〉 50% blast count) were screened against a comprehensive collection of cytotoxic chemotherapy agents (n=103) and targeted preclinical and clinical drugs (n=100, later 170). The drugs were tested over a 10,000-fold concentration range resulting in a dose-response curve for each compound and each leukemia sample. A leukemia-specific drug sensitivity score (sDSS) was derived from the area under each dose response curve in relation to the total area, and comparing leukemia samples with normal bone marrow results. The turnaround time for the DSRT assay was 4 days. All samples also underwent deep exome (40–100×) and transcriptome sequencing to identify somatic mutations and fusion transcripts, as well as phosphoproteomic array analysis to uncover active cell signaling pathways. Results: The drug sensitivity profiles of AML patient samples differed markedly from healthy bone marrow controls, with leukemia-specific responses mostly observed for molecularly targeted drugs. Individual AML patient samples clustered into distinct subgroups based on their chemoresponse profiles, thus suggesting that the subgroups were driven by distinct signaling pathways. Similarly, compounds clustered based on the response across the samples revealing functional groups of compounds of both expected and unexpected composition. Furthermore, subsets of patient samples stood out as highly sensitive to different compounds. Specifically, dasatinib, rapalogs, MEK inhibitors, ruxolitinib, sunitinib, sorafenib, ponatinib, foretinib and quizartinib were found to be selectively active in 5 (31%), 5 (31%), 4 (25%), 4 (25%), 3 (19%), 3 (19%), 2 (13%), 2 (13%), and 1 (6%) of the AML patients ex vivo, respectively. DSRT assays of serial samples from the same patient at different stages of leukemia progression revealed patterns of resistance to the clinically applied drugs, in conjunction with evidence of dynamic changes in the clonal genomic architecture. Emergence of vulnerabilities to novel pathway inhibitors was seen at the time of drug resistance, suggesting potential combinatorial or successive cycles of drugs to achieve remissions in an increasingly chemorefractory disease. Genomic and molecular profiling of the same patient samples not only highlighted potential biomarkers reflecting the ex vivo DSRT response patterns, but also made it possible to follow in parallel the drug sensitivities and the clonal progression of the disease in serial samples from the same patients. Summary: The comprehensive analysis of drug responses by DSRT in samples from human chemorefractory AML patients revealed a complex pattern of sensitivities to distinct inhibitors. Thus, these results suggest tremendous heterogeneity in drug response patterns and underline the relevance of individual ex vivo drug testing in selecting optimal therapies for patients (personalized medicine). Together with genomic and molecular profiling, the DSRT analysis resulted in a comprehensive view of the drug response landscape and the underlying molecular changes in relapsed AML. These data can readily be translated into the clinic via biomarker-driven stratified clinical trials. Disclosures: Mustjoki: Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria. Kallioniemi:Roche: Research Funding; Medisapiens: Membership on an entity's Board of Directors or advisory committees. Porkka:Bristol-Myers Squibb: Honoraria, Research Funding; Novartis: Honoraria, Research Funding.
    Materialart: Online-Ressource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Society of Hematology
    Publikationsdatum: 2012
    ZDB Id: 1468538-3
    ZDB Id: 80069-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: New England Journal of Medicine, Massachusetts Medical Society, Vol. 366, No. 20 ( 2012-05-17), p. 1905-1913
    Materialart: Online-Ressource
    ISSN: 0028-4793 , 1533-4406
    RVK:
    Sprache: Englisch
    Verlag: Massachusetts Medical Society
    Publikationsdatum: 2012
    ZDB Id: 1468837-2
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 5067-5067
    Kurzfassung: Despite significant advances in characterizing the molecular genetics of AML, the clonal evolution of leukemic cells and the dynamic impact of genomic changes on the development of the disease and progression to drug resistance are not well understood. Here, we applied next-generation sequencing to quantify aberrant tumor subclones carrying specific mutant alleles of key cancer genes and developed a method to extract quantitative high-resolution copy number changes across the genome using exome sequencing data from matching cancer and normal DNA. Serial bone marrow (BM) samples collected from diagnosis to relapse to post-treatment drug resistance in a patient-centric manner made it possible to trace the clonal evolution of AML and to identify variants potentially involved in drug resistance. Exome sequencing from AML blast cells and normal skin biopsies was performed as part of the Finnish Hematology Registry and Biobanking (FHRB) effort. Consecutive paired samples from different patients revealed unique genetic patterns of clonal evolution and cancer progression in each patient. In a pre-resistant sample of one AML M5 patient, we identified four closely spaced insertions in the Wilm's Tumor (WT1) suppressor gene, none of which appear on the same sequence reads. This suggests the presence of multiple distinct leukemic subclones even before treatment resistance and underscores the strong selective advantage conferred by WT1 mutations. After relapse, one of the subclones was lost, and another one significantly increased suggesting that the relapse arose from the expansion of a pre-existing resistant subclone. In this patient, recurrent clones otherwise featured similar copy number changes and the same fusion genes as the primary diagnostic sample. In another AML patient developing recurrence an opposite pattern was observed: The relapsed, drug-resistant cells displayed an enormous increase of small microdeletions compared to the diagnostic, pre-treatment sample, while almost all sequence-level alterations in potential cancer genes were the same between the two samples. This suggests that a distinct type of DNA repair deficiency may have contributed to the drug resistant clone in this patient. Conclusions: Exome sequencing from paired samples of AML cells before and after relapse makes it possible to trace the clonal evolution of the disease and study the impact of therapy both at the level of sequence alterations of key cancer genes and simultaneously at the level of copy number changes inferred from exome sequence data. This analysis has highlighted multiple genomic patterns by which resistance may evolve in vivo during cancer treatment. Refined bioinformatic analysis and interpretation of exome-seq data provides a rich resource to identify genetic biomarkers of drug response and minimal residual disease. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 5067. doi:1538-7445.AM2012-5067
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2012
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz