Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Medical Association (AMA)  (5)
  • Foster, Norm  (5)
  • 1
    In: JAMA Psychiatry, American Medical Association (AMA), Vol. 80, No. 7 ( 2023-07-01), p. 700-
    Abstract: Understanding the mechanisms of delusion formation in Alzheimer disease (AD) could inform the development of therapeutic interventions. It has been suggested that delusions arise as a consequence of false memories. Objective To investigate whether delusions in AD are associated with false recognition, and whether higher rates of false recognition and the presence of delusions are associated with lower regional brain volumes in the same brain regions. Design, Setting, and Participants Since the Alzheimer’s Disease Neuroimaging Initiative (ADNI) launched in 2004, it has amassed an archive of longitudinal behavioral and biomarker data. This cross-sectional study used data downloaded in 2020 from ADNI participants with an AD diagnosis at baseline or follow-up. Data analysis was performed between June 24, 2020, and September 21, 2021. Exposure Enrollment in the ADNI. Main Outcomes and Measures The main outcomes included false recognition, measured with the 13-item Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog 13) and the Rey Auditory Verbal Learning Test (RAVLT) and volume of brain regions corrected for total intracranial volume. Behavioral data were compared for individuals with delusions in AD and those without using independent-samples t tests or Mann-Whitney nonparametric tests. Significant findings were further explored using binary logistic regression modeling. For neuroimaging data region of interest analyses using t tests, Poisson regression modeling or binary logistic regression modeling and further exploratory, whole-brain voxel-based morphometry analyses were carried out to explore the association between regional brain volume and false recognition or presence of delusions. Results Of the 2248 individuals in the ADNI database, 728 met the inclusion criteria and were included in this study. There were 317 (43.5%) women and 411 (56.5%) men. Their mean (SD) age was 74.8 (7.4) years. The 42 participants with delusions at baseline had higher rates of false recognition on the ADAS-Cog 13 (median score, 3; IQR, 1 to 6) compared with the 549 control participants (median score, 2; IQR, 0 to 4; U  = 9398.5; P  = .04). False recognition was not associated with the presence of delusions when confounding variables were included in binary logistic regression models. An ADAS-Cog 13 false recognition score was inversely associated with left hippocampal volume (odds ratio [OR], 0.91 [95% CI, 0.88-0.94] , P   & amp;lt; .001), right hippocampal volume (0.94 [0.92-0.97], P   & amp;lt; .001), left entorhinal cortex volume (0.94 [0.91-0.97], P   & amp;lt; .001), left parahippocampal gyrus volume (0.93 [0.91-0.96], P   & amp;lt; .001), and left fusiform gyrus volume (0.97 [0.96-0.99], P   & amp;lt; .001). There was no overlap between locations associated with false recognition and those associated with delusions. Conclusions and Relevance In this cross-sectional study, false memories were not associated with the presence of delusions after accounting for confounding variables, and no indication for overlap of neural networks for false memories and delusions was observed on volumetric neuroimaging. These findings suggest that delusions in AD do not arise as a direct consequence of misremembering, lending weight to ongoing attempts to delineate specific therapeutic targets for treatment of psychosis.
    Type of Medium: Online Resource
    ISSN: 2168-622X
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2023
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: JAMA Psychiatry, American Medical Association (AMA), Vol. 79, No. 5 ( 2022-05-01), p. 464-
    Type of Medium: Online Resource
    ISSN: 2168-622X
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2022
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: JAMA Neurology, American Medical Association (AMA), Vol. 80, No. 9 ( 2023-09-01), p. 969-
    Abstract: Knowledge is lacking on the prevalence and prognosis of individuals with a β-amyloid–negative, tau-positive (A−T+) cerebrospinal fluid (CSF) biomarker profile. Objective To estimate the prevalence of a CSF A−T+ biomarker profile and investigate its clinical implications. Design, Setting, and Participants This was a retrospective cohort study of the cross-sectional multicenter University of Gothenburg (UGOT) cohort (November 2019-January 2021), the longitudinal multicenter Alzheimer Disease Neuroimaging Initiative (ADNI) cohort (individuals with mild cognitive impairment [MCI] and no cognitive impairment; September 2005-May 2022), and 2 Wisconsin cohorts, Wisconsin Alzheimer Disease Research Center and Wisconsin Registry for Alzheimer Prevention (WISC; individuals without cognitive impairment; February 2007-November 2020). This was a multicenter study, with data collected from referral centers in clinical routine (UGOT) and research settings (ADNI and WISC). Eligible individuals had 1 lumbar puncture (all cohorts), 2 or more cognitive assessments (ADNI and WISC), and imaging (ADNI only) performed on 2 separate occasions. Data were analyzed on August 2022 to April 2023. Exposures Baseline CSF Aβ42/40 and phosphorylated tau (p-tau)181; cognitive tests (ADNI: modified preclinical Alzheimer cognitive composite [mPACC]; WISC: modified 3-test PACC [PACC-3] ). Exposures in the ADNI cohort included [ 18 F]-florbetapir amyloid positron emission tomography (PET), magnetic resonance imaging (MRI), [ 18 F]-fluorodeoxyglucose PET (FDG-PET), and cross-sectional tau-PET (ADNI: [ 18 F]-flortaucipir, WISC: [ 18 F]-MK6240). Main Outcomes and Measures Primary outcomes were the prevalence of CSF AT biomarker profiles and continuous longitudinal global cognitive outcome and imaging biomarker trajectories in A−T+ vs A−T− groups. Secondary outcomes included cross-sectional tau-PET. Results A total of 7679 individuals (mean [SD] age, 71.0 [8.4] years; 4101 male [53%]) were included in the UGOT cohort, 970 individuals (mean [SD] age, 73 [7.0] years; 526 male [54%] ) were included in the ADNI cohort, and 519 individuals (mean [SD] age, 60 [7.3] years; 346 female [67%]) were included in the WISC cohort. The prevalence of an A−T+ profile in the UGOT cohort was 4.1% (95% CI, 3.7%-4.6%), being less common than the other patterns. Longitudinally, no significant differences in rates of worsening were observed between A−T+ and A−T− profiles for cognition or imaging biomarkers. Cross-sectionally, A−T+ had similar tau-PET uptake to individuals with an A−T− biomarker profile. Conclusion and Relevance Results suggest that the CSF A−T+ biomarker profile was found in approximately 5% of lumbar punctures and was not associated with a higher rate of cognitive decline or biomarker signs of disease progression compared with biomarker-negative individuals.
    Type of Medium: Online Resource
    ISSN: 2168-6149
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2023
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: JAMA Neurology, American Medical Association (AMA), Vol. 78, No. 4 ( 2021-04-01), p. 396-
    Type of Medium: Online Resource
    ISSN: 2168-6149
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: JAMA Neurology, American Medical Association (AMA), Vol. 80, No. 6 ( 2023-06-01), p. 614-
    Abstract: Longitudinal tau positron emission tomography (PET) is a relevant outcome in clinical trials evaluating disease-modifying therapies in Alzheimer disease (AD). A key unanswered question is whether the use of participant-specific (individualized) regions of interest (ROIs) is superior to conventional approaches where the same ROI (group-level) is used for each participant. Objective To compare group- and participant-level ROIs in participants at different stages of the AD clinical continuum in terms of annual percentage change in tau-PET standardized uptake value ratio (SUVR) and sample size requirements. Design, Setting, and Participants This was a longitudinal cohort study with consecutive participant enrollment between September 18, 2017, and November 15, 2021. Included in the analysis were participants with mild cognitive impairment and AD dementia from the prospective and longitudinal Swedish Biomarkers For Identifying Neurodegenerative Disorders Early and Reliably 2 (BioFINDER-2) study; in addition, a validation sample (the AVID 05e, Expedition-3, Alzheimer’s Disease Neuroimaging Initiative [ADNI], and BioFINDER-1 study cohorts) was also included. Exposures Tau PET (BioFINDER-2, [ 18 F]RO948; validation sample, [ 18 F]flortaucipir), 7 group-level (5 data-driven stages, meta-temporal, whole brain), and 5 individualized ROIs. Main Outcomes and Measures Annual percentage change in tau-PET SUVR across ROIs. Sample size requirements in simulated clinical trials using tau PET as an outcome were also calculated. Results A total of 215 participants (mean [SD] age, 71.4 (7.5) years; 111 male [51.6%] ) from the BioFINDER-2 study were included in this analysis: 97 amyloid-β (Aβ)–positive cognitively unimpaired (CU) individuals, 77 with Aβ-positive mild cognitive impairment (MCI), and 41 with AD dementia. In the validation sample were 137 Aβ-positive CU participants, 144 with Aβ-positive MCI, and 125 with AD dementia. Mean (SD) follow-up time was 1.8 (0.3) years. Using group-level ROIs, the largest annual percentage increase in tau-PET SUVR in Aβ-positive CU individuals was seen in a composite ROI combining the entorhinal cortex, hippocampus, and amygdala (4.29%; 95% CI, 3.42%-5.16%). In individuals with Aβ-positive MCI, the greatest change was seen in the temporal cortical regions (5.82%; 95% CI, 4.67%-6.97%), whereas in those with AD dementia, the greatest change was seen in the parietal regions (5.22%; 95% CI, 3.95%-6.49%). Significantly higher estimates of annual percentage change were found using several of the participant-specific ROIs. Importantly, the simplest participant-specific approach, where change in tau PET was calculated in an ROI that best matched the participant’s data-driven disease stage, performed best in all 3 subgroups. For the power analysis, sample size reductions for the participant-specific ROIs ranged from 15.94% (95% CI, 8.14%-23.74%) to 72.10% (95% CI, 67.10%-77.20%) compared with the best-performing group-level ROIs. Findings were replicated using [ 18 F]flortaucipir. Conclusions and Relevance Finding suggest that certain individualized ROIs carry an advantage over group-level ROIs for assessing longitudinal tau changes and increase the power to detect treatment effects in AD clinical trials using longitudinal tau PET as an outcome.
    Type of Medium: Online Resource
    ISSN: 2168-6149
    Language: English
    Publisher: American Medical Association (AMA)
    Publication Date: 2023
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages