Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Philosophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, Vol. 368, No. 1621 ( 2013-07-05), p. 20130166-
    Abstract: Existing descriptions of bi-directional ammonia (NH 3 ) land–atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH 3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH 3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH 3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH 3 emission–deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28–67%). Together with increased anthropogenic activity, global NH 3 emissions may increase from 65 (45–85) Tg N in 2008 to reach 132 (89–179) Tg by 2100.
    Type of Medium: Online Resource
    ISSN: 0962-8436 , 1471-2970
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2013
    detail.hit.zdb_id: 1462620-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The Royal Society ; 2020
    In:  Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 378, No. 2183 ( 2020-10-30), p. 20190315-
    In: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, The Royal Society, Vol. 378, No. 2183 ( 2020-10-30), p. 20190315-
    Abstract: Ammonia and ammonium have received less attention than other forms of air pollution, with limited progress in controlling emissions at UK, European and global scales. By contrast, these compounds have been of significant past interest to science and society, the recollection of which can inform future strategies. Sal ammoniac ( nūshādir , nao sha ) is found to have been extremely valuable in long-distance trade ( ca AD 600–1150) from Egypt and China, where 6–8 kg N could purchase a human life, while air pollution associated with nūshādir collection was attributed to this nitrogen form. Ammonia was one of the keys to alchemy—seen as an early experimental mesocosm to understand the world—and later became of interest as ‘alkaline air’ within the eighteenth century development of pneumatic chemistry. The same economic, chemical and environmental properties are found to make ammonia and ammonium of huge relevance today. Successful control of acidifying SO 2 and NO x emissions leaves atmospheric NH 3 in excess in many areas, contributing to particulate matter (PM 2.5 ) formation, while leading to a new significance of alkaline air, with adverse impacts on natural ecosystems. Investigations of epiphytic lichens and bog ecosystems show how the alkalinity effect of NH 3 may explain its having three to five times the adverse effect of ammonium and nitrate, respectively. It is concluded that future air pollution policy should no longer neglect ammonia. Progress is likely to be mobilized by emphasizing the lost economic value of global N emissions ($200 billion yr −1 ), as part of developing the circular economy for sustainable nitrogen management. This article is part of a discussion meeting issue ‘Air quality, past present and future’.
    Type of Medium: Online Resource
    ISSN: 1364-503X , 1471-2962
    RVK:
    Language: English
    Publisher: The Royal Society
    Publication Date: 2020
    detail.hit.zdb_id: 208381-4
    detail.hit.zdb_id: 1462626-3
    SSG: 11
    SSG: 5,1
    SSG: 5,21
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Environmental Science: Atmospheres, Royal Society of Chemistry (RSC), Vol. 2, No. 5 ( 2022), p. 829-851
    Abstract: This review is a summary of the most up-to-date knowledge regarding assessment of atmospheric deposition of reactive nitrogen ( N r ) pollutants across complex terrain in the UK. Progress in the understanding of the mechanisms and quantification of N r deposition in areas of complex topography is slow, as no concerted attempts to measure the components of N r in complex terrain have been made in the last decade. This is likely due to the inherent complexity of the atmospheric processes and chemical interactions which contribute to deposition in these areas. More than 300 studies have been reviewed, and we have consulted with a panel of international experts which we assembled for that purpose. We report here on key findings and knowledge gaps identified regarding measurement and modelling techniques used to quantify deposition of N r across complex terrain in the UK, which depending on definition, may represent up to 60% of land coverage across Great Britain. The large body of peer reviewed papers, reports and other items reviewed in this study has highlighted both the strengths and weaknesses in the tools available to scientists, regulators and policy makers. This review highlights that there is no coherent global research effort to constrain the uncertainties in N r deposition over complex terrain, despite the clearly identified risk of N deposition to ecosystems and water quality. All evidence identified that enhanced N r deposition across complex terrain occurs, and magnitude of the enhancement is not known; however, there are major uncertainties particularly in the differences between modelled and measured wet deposition in complex terrain and representing accurate surface interactions in models. Using simplified estimates for N r deposition, based on current understanding of current measurement and model approaches, an enhancement across UK complex terrain in the range of a factor of 1.4–2.5 ( i.e. 40–150% larger than current estimates) is likely over complex upland terrain. If at the upper limits of this, then significantly more ecosystems in the UK would be at a direct risk of degradation, and the potential for long-term non-remediable water quality issues increased.
    Type of Medium: Online Resource
    ISSN: 2634-3606
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2022
    detail.hit.zdb_id: 3057711-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages