Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Molecular Medicine, Springer Science and Business Media LLC, Vol. 98, No. 11 ( 2020-11), p. 1657-1657
    Type of Medium: Online Resource
    ISSN: 0946-2716 , 1432-1440
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1462132-0
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 13 ( 2023-4-27)
    Abstract: Long non-coding ribonucleic acids (lncRNAs) are involved in the cellular damage response following exposure to ionizing radiation as applied in radiotherapy. However, the role of lncRNAs in radiation response concerning intrinsic susceptibility to late effects of radiation exposure has not been examined in general or in long-term survivors of childhood cancer with and without potentially radiotherapy-related second primary cancers, in particular. Methods Primary skin fibroblasts (n=52 each) of long-term childhood cancer survivors with a first primary cancer only (N1), at least one second primary neoplasm (N2+), as well as tumor-free controls (N0) from the KiKme case-control study were matched by sex, age, and additionally by year of diagnosis and entity of the first primary cancer. Fibroblasts were exposed to 0.05 and 2 Gray (Gy) X-rays. Differentially expressed lncRNAs were identified with and without interaction terms for donor group and dose. Weighted co-expression networks of lncRNA and mRNA were constructed using WGCNA . Resulting gene sets (modules) were correlated to the radiation doses and analyzed for biological function. Results After irradiation with 0.05Gy, few lncRNAs were differentially expressed (N0: AC004801.4 ; N1: PCCA-DT , AF129075.3 , LINC00691 , AL158206.1 ; N2+: LINC02315 ). In reaction to 2 Gy, the number of differentially expressed lncRNAs was higher (N0: 152, N1: 169, N2+: 146). After 2 Gy, AL109976.1 and AL158206.1 were prominently upregulated in all donor groups. The co-expression analysis identified two modules containing lncRNAs that were associated with 2 Gy (module1: 102 mRNAs and 4 lncRNAs: AL158206.1 , AL109976.1 , AC092171.5 , TYMSOS , associated with p53-mediated reaction to DNA damage ; module2: 390 mRNAs, 7 lncRNAs: AC004943.2 , AC012073.1 , AC026401.3 , AC092718.4 , MIR31HG , STXBP5-AS1 , TMPO-AS1 , associated with cell cycle regulation ). Discussion For the first time, we identified the lncRNAs AL158206.1 and AL109976.1 as involved in the radiation response in primary fibroblasts by differential expression analysis. The co-expression analysis revealed a role of these lncRNAs in the DNA damage response and cell cycle regulation post-IR. These transcripts may be targets in cancer therapy against radiosensitivity, as well as provide grounds for the identification of at-risk patients for immediate adverse reactions in healthy tissues. With this work we deliver a broad basis and new leads for the examination of lncRNAs in the radiation response.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2649216-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: DNA Repair, Elsevier BV, Vol. 122 ( 2023-02), p. 103435-
    Type of Medium: Online Resource
    ISSN: 1568-7864
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2082770-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Molecular Medicine, Springer Science and Business Media LLC, Vol. 28, No. 1 ( 2022-12)
    Abstract: The etiology and most risk factors for a sporadic first primary neoplasm in childhood or subsequent second primary neoplasms are still unknown. One established causal factor for therapy-associated second primary neoplasms is the exposure to ionizing radiation during radiation therapy as a mainstay of cancer treatment. Second primary neoplasms occur in 8% of all cancer survivors within 30 years after the first diagnosis in Germany, but the underlying factors for intrinsic susceptibilities have not yet been clarified. Thus, the purpose of this nested case–control study was the investigation and comparison of gene expression and affected pathways in primary fibroblasts of childhood cancer survivors with a first primary neoplasm only or with at least one subsequent second primary neoplasm, and controls without neoplasms after exposure to a low and a high dose of ionizing radiation. Methods Primary fibroblasts were obtained from skin biopsies from 52 adult donors with a first primary neoplasm in childhood (N1), 52 with at least one additional primary neoplasm (N2+), as well as 52 without cancer (N0) from the KiKme study. Cultured fibroblasts were exposed to a high [2 Gray (Gy)] and a low dose (0.05 Gy) of X-rays. Messenger ribonucleic acid was extracted 4 h after exposure and Illumina-sequenced. Differentially expressed genes (DEGs) were computed using limma for R, selected at a false discovery rate level of 0.05, and further analyzed for pathway enrichment (right-tailed Fisher’s Exact Test) and (in-) activation (z ≥|2|) using Ingenuity Pathway Analysis . Results After 0.05 Gy, least DEGs were found in N0 (n = 236), compared to N1 (n = 653) and N2+ (n = 694). The top DEGs with regard to the adjusted p -value were upregulated in fibroblasts across all donor groups ( SESN1 , MDM2 , CDKN1A , TIGAR , BTG2 , BLOC1S2 , PPM1D , PHLDB3 , FBXO22 , AEN , TRIAP1 , and POLH) . Here, we observed activation of p53 Signaling in N0 and to a lesser extent in N1, but not in N2+. Only in N0, DNA (excision-) repair (involved genes: CDKN1A , PPM1D , and DDB2 ) was predicted to be a downstream function, while molecular networks in N2+ were associated with cancer, as well as injury and abnormalities (among others, downregulation of MSH6 , CCNE2 , and CHUK ). After 2 Gy, the number of DEGs was similar in fibroblasts of all donor groups and genes with the highest absolute log 2 fold-change were upregulated throughout ( CDKN1A, TIGAR, HSPA4L , MDM2 , BLOC1SD2 , PPM1D , SESN1 , BTG2 , FBXO22 , PCNA , and TRIAP1 ). Here, the p53 Signaling - Pathway was activated in fibroblasts of all donor groups. The Mitotic Roles of Polo Like Kinase - Pathway was inactivated in N1 and N2+. Molecular Mechanisms of Cancer were affected in fibroblasts of all donor groups. P53 was predicted to be an upstream regulator in fibroblasts of all donor groups and E2F1 in N1 and N2+. Results of the downstream analysis were senescence in N0 and N2+, transformation of cells in N0, and no significant effects in N1. Seven genes were differentially expressed in reaction to 2 Gy dependent on the donor group ( LINC00601 , COBLL1 , SESN2 , BIN3 , TNFRSF10A , EEF1AKNMT , and BTG2 ). Conclusion Our results show dose-dependent differences in the radiation response between N1/N2+ and N0. While mechanisms against genotoxic stress were activated to the same extent after a high dose in all groups, the radiation response was impaired after a low dose in N1/N2+, suggesting an increased risk for adverse effects including carcinogenesis, particularly in N2+.
    Type of Medium: Online Resource
    ISSN: 1076-1551 , 1528-3658
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1475577-4
    detail.hit.zdb_id: 1283676-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 13 ( 2023-4-14)
    Abstract: Childhood cancer survivors (CCS) are at particularly high risk for therapy-related late sequelae, with secondary primary neoplasms (SPN) being the most detrimental. Since there is no standardized questionnaire for retrospective assessment of associations between prior cancer treatments and late health effects, we developed a self-administered questionnaire and validated it in a cohort of CCS. Methods CCS of a first primary neoplasm (FPN, N=340) only or with a subsequent SPN (N=101) were asked whether they had received cancer therapies. Self-reports were compared to participants’ medical records on cancer therapies from hospitals and clinical studies (N=242). Cohen’s Kappa (κ) was used to measure their agreement and logistic regression was used to identify factors influencing the concordance. Associations between exposure to cancer therapies and late health effects (overweight/obesity, diseases of the lipid metabolism and the thyroid gland, cardiovascular diseases, occurrence of SPN) were analyzed in all participants by applying generalized linear mixed models to calculate odds ratios (OR) and 95% confidence intervals (95%CI). Results For CCS of SPN, a perfect agreement was found between self-reports and medical records for chemotherapy (CT, κ=1.0) while the accordance for radiotherapy (RT) was lower but still substantial (κ=0.8). For the CCS of FPN the accordance was less precise (CT: κ=0.7, RT: κ=0.3). Cancer status, tumors of the central nervous system, sex, age at recruitment, vocational training, follow-up time, and comorbidities had no impact on agreement. CCS with exposure to CT were found to be less often overweight or obese compared to those without CT (OR=0.6 (95%CI 0.39; 0.91)). However, they were found to suffer more likely from thyroid diseases excluding thyroid cancers (OR=9.91 (95%CI 4.0; 24.57)) and hypercholesterolemia (OR=4.45 (95%CI 1.5; 13.23)). All other analyses did not show an association. Conclusion Our new questionnaire proved reliable for retrospective assessment of exposure to CT and RT in CCS of SPN. For the CCS of FPN, self-reported RT was very imprecise and should not be used for further analyses. We revealed an association between late health outcomes occurring as hypercholesterolemia and thyroid diseases, excluding thyroid cancer, and the use of CT for the treatment of childhood cancer.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2649216-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 4261-4261
    Abstract: Treatment of first primary neoplasms (PN) in childhood with radiotherapy or chemotherapy is an established risk factor for second primary neoplasms (SN). In addition, there is growing evidence for this association from observational studies on ionizing radiation and cancer risk, in particular after radiation exposure in childhood. As only a subgroup of the treated children suffers from SN, other risk modifying factors (e.g. genetics) must be involved. We are conducting a case-control study with 600 anticipated participants to evaluate gene-radiation interactions and risk of SN (leukemia, thyroid or skin cancer) as well as PN (leukemia, lymphoma or CNS) with a new epidemiological design, in which we combine observational with experimental elements by analyzing gene expression in irradiated cultured human fibroblasts from skin biopsies. In a first step, we examine the participation proportions of survivors of childhood cancer with and without a SN and cancer free control patients (CO) from the department of accident surgery and orthopaedics. In addition to a skin biopsy of 3 mm and a saliva sample, we collect detailed questionnaire information on lifetime exposure to medical radiation and chemotherapy, socio-demographic factors, smoking, drinking, physical activity, medical history and family history of cancer and other diseases. Cases and controls will be matched by sex and age (1:1), and additionally among the former childhood cancer patients by type of the PN and year of first diagnosis (1 SN:3 PN). In explorative pilot experiments, we estimate gene expression differences by RNA-Seq in fibroblasts after low (0.05 Gy) and high (2 Gy) radiation doses at different time points (0.25 h, 2 h, 24 h). In the first recruitment drives of the ongoing study, we recruited 77 patients with SN and 95 matched patients with only one PN from 1975 eligible former childhood cancer patients at the German Childhood Cancer Registry, as well as 22 CO patients. Until November 2016, 33% of the contacted 231 SN patients, 20% of the 486 contacted PN patients and 69% of the 32 contacted CO patients participated in our study. Two hours after low and high in vitro radiation doses, the largest number of genes were differentially expressed, some of them only after high doses, some only after low doses and some after both. To our knowledge, the KIKME study is the first epidemiological project analyzing differential gene expression in primary fibroblasts before and after radiation with high and low doses to evaluate the potential genetic basis for emergence of a SN and a PN. However, the biological importance of the suggested differential gene expression after high and low doses of radiation has to be confirmed with the full study population. In addition, the gene expression must be analyzed in detail by group (SN, PN, CO) and will be combined with results from whole genome sequencing in order to obtain a comprehensive view of the role of radiation in the carcinogenesis of childhood cancer. Citation Format: Manuela Marron, Sebastian Zahnreich, Olesja Sinizyn, Heinz Schmidberger, Moritz Hess, Patricia Sadre Dadras, Iris Altebockwinkel, Thomas Hankeln, Steffen Rapp, Anne Ebersberger, Christian Grad, Eva Holzhäuser, Lukas Eckhard, Dirk Proschek, Maria Blettner, Peter Kaatsch, Claudia Spix, Danuta Galetzka, Harald Binder. Cancer in childhood and molecular epidemiology - The KIKME case-control study [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4261. doi:10.1158/1538-7445.AM2017-4261
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecular Medicine, Springer Science and Business Media LLC, Vol. 26, No. 1 ( 2020-12)
    Abstract: Exposure to ionizing radiation induces complex stress responses in cells, which can lead to adverse health effects such as cancer. Although a variety of studies investigated gene expression and affected pathways in human fibroblasts after exposure to ionizing radiation, the understanding of underlying mechanisms and biological effects is still incomplete due to different experimental settings and small sample sizes. Therefore, this study aims to identify the time point with the highest number of differentially expressed genes and corresponding pathways in primary human fibroblasts after irradiation at two preselected time points. Methods Fibroblasts from skin biopsies of 15 cell donors were exposed to a high (2Gy) and a low (0.05Gy) dose of X-rays. RNA was extracted and sequenced 2 h and 4 h after exposure. Differentially expressed genes with an adjusted p -value 〈  0.05 were flagged and used for pathway analyses including prediction of upstream and downstream effects. Principal component analyses were used to examine the effect of two different sequencing runs on quality metrics and variation in expression and alignment and for explorative analysis of the radiation dose and time point of analysis. Results More genes were differentially expressed 4 h after exposure to low and high doses of radiation than after 2 h. In experiments with high dose irradiation and RNA sequencing after 4 h, inactivation of the FAT10 cancer signaling pathway and activation of gluconeogenesis I , glycolysis I, and prostanoid biosynthesis was observed taking p -value ( 〈  0.05) and (in) activating z-score (≥2.00 or ≤ − 2.00) into account. Two hours after high dose irradiation, inactivation of small cell lung cancer signaling was observed. For low dose irradiation experiments, we did not detect any significant ( p   〈  0.05 and z-score ≥ 2.00 or ≤ − 2.00) activated or inactivated pathways for both time points. Conclusions Compared to 2 h after irradiation, a higher number of differentially expressed genes were found 4 h after exposure to low and high dose ionizing radiation. Differences in gene expression were related to signal transduction pathways of the DNA damage response after 2 h and to metabolic pathways, that might implicate cellular senescence, after 4 h. The time point 4 h will be used to conduct further irradiation experiments in a larger sample.
    Type of Medium: Online Resource
    ISSN: 1076-1551 , 1528-3658
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1475577-4
    detail.hit.zdb_id: 1283676-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 10 ( 2020-8-7)
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2020
    detail.hit.zdb_id: 2649216-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-10-17)
    Abstract: Improved treatments for childhood cancer result in a growing number of long-term childhood cancer survivors (CCS). The diagnosis and the prevalence of comorbidities may, however, influence their lifestyle later in life. Nonetheless, little is known about differences in late effects between CCS of a first primary neoplasm (FPN) in childhood and subsequent second primary neoplasms (SPN) and their impact on lifestyle. Therefore, we aim to investigate associations between the occurrence of FPN or SPN and various diseases and lifestyle in the later life of CCS. Methods CCS of SPN (n=101) or FPN (n=340) and cancer-free controls (n=150) were matched by age and sex, and CCS additionally by year and entity of FPN. All participants completed a self-administered questionnaire on anthropometric and socio-economic factors, medical history, health status, and lifestyle. Mean time between FPN diagnosis and interview was 27.3 years for SPN and 26.2 years for FPN CCS. To confirm results from others and to generate new hypotheses on late effects of childhood cancer as well as CCS´ lifestyles, generalized linear mixed models were applied. Results CCS were found to suffer more likely from diseases compared to cancer-free controls. In detail, associations with cancer status were observed for hypercholesterinemia and thyroid diseases. Moreover, CCS were more likely to take regular medication compared to controls. A similar association was observed for CCS of SPN compared to CCS of FPN. In contrast to controls, CCS rarely exercise more than 5 hours per week, consumed fewer soft and alcoholic drinks, and were less likely to be current, former, or passive smokers. Additionally, they were less likely overweight or obese. All other exploratory analyses performed on cardiovascular, chronic lung, inflammatory bone, allergic, and infectious diseases, as well as on a calculated health-score revealed no association with tumor status. Conclusion CCS were more affected by pathologic conditions and may consequently take more medication, particularly among CCS of SPN. The observed higher disease burden is likely related to the received cancer therapy. To reduce the burden of long-term adverse health effects in CCS, improving cancer therapies should therefore be in focus of research in this area.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: JMIR Research Protocols, JMIR Publications Inc., Vol. 10, No. 11 ( 2021-11-11), p. e32395-
    Abstract: Therapy for a first primary neoplasm (FPN) in childhood with high doses of ionizing radiation is an established risk factor for second primary neoplasms (SPN). An association between exposure to low doses and childhood cancer is also suggested; however, results are inconsistent. As only subgroups of children with FPNs develop SPNs, an interaction between radiation, genetic, and other risk factors is presumed to influence cancer development. Objective Therefore, the population-based, nested case-control study KiKme aims to identify differences in genetic predisposition and radiation response between childhood cancer survivors with and without SPNs as well as cancer-free controls. Methods We conducted a population-based, nested case-control study KiKme. Besides questionnaire information, skin biopsies and saliva samples are available. By measuring individual reactions to different exposures to radiation (eg, 0.05 and 2 Gray) in normal somatic cells of the same person, our design enables us to create several exposure scenarios for the same person simultaneously and measure several different molecular markers (eg, DNA, messenger RNA, long noncoding RNA, copy number variation). Results Since 2013, 101 of 247 invited SPN patients, 340 of 1729 invited FPN patients, and 150 of 246 invited cancer-free controls were recruited and matched by age and sex. Childhood cancer patients were additionally matched by tumor morphology, year of diagnosis, and age at diagnosis. Participants reported on lifestyle, socioeconomical, and anthropometric factors, as well as on medical radiation history, health, and family history of diseases (n=556). Primary human fibroblasts from skin biopsies of the participants were cultivated (n=499) and cryopreserved (n=3886). DNA was extracted from fibroblasts (n=488) and saliva (n=510). Conclusions This molecular-epidemiological study is the first to combine observational epidemiological research with standardized experimental components in primary human skin fibroblasts to identify genetic predispositions related to ionizing radiation in childhood and SPNs. In the future, fibroblasts of the participants will be used for standardized irradiation experiments, which will inform analysis of the case-control study and vice versa. Differences between participants will be identified using several molecular markers. With its innovative combination of experimental and observational components, this new study will provide valuable data to forward research on radiation-related risk factors in childhood cancer and SPNs. International Registered Report Identifier (IRRID) DERR1-10.2196/32395
    Type of Medium: Online Resource
    ISSN: 1929-0748
    Language: English
    Publisher: JMIR Publications Inc.
    Publication Date: 2021
    detail.hit.zdb_id: 2719222-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages