Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Gribben, John G  (2)
  • Riches, John C.  (2)
Type of Medium
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 313-313
    Abstract: Abstract 313 Background: We have previously demonstrated that CD4 and CD8 T-cells from CLL patients show profound dysfunctions in multiple gene pathways, including the actin cytoskeleton, which impairs the formation of functional immunologic synapses between T cells and APCs. Functional screening assays on Mec-1 cells have identified CD200, CD270, CD274, and CD276 as inhibitory ligands which induce impaired actin synapse formation in both allogeneic and autologous T cells. We also demonstrated that the Eμ-TCL1 transgenic mouse model of CLL closely resembles the T-cell defects observed in humans, validating it as a valuable preclinical tool to examine changes in the microenvironment alongside the development of leukaemia. The aim of the current study is to investigate the role of CD200, CD270, CD274, and CD276 in the Eμ-TCL1 model. Methods: We used multiparameter flow cytometry to establish the expression of inhibitory ligands on CD19+/CD5+ unpurified splenocytes from Eμ-TCL1 mice on both the C57Bl/6 (B6) and the C3HB6-F1 background and compared this to unpurified splenocytes from age matched wild-type (WT) controls of the respective coisogenic strain. Results: A total of 19 leukemic Eμ-TCL1 (n=10 C57Bl/6 and n=9 C3HB6-F1 background) and 11 WT mice (n=6 C57Bl/6 and n=5 C3HB6-F1 background) were examined. CD19+/CD5+ CLL cells constituted 92% (range 62–97%) of the DAPI-negative lymphocyte population. On CD19+/CD5+ CLL cells, CD274 (mean 98% ± SEM 0.4) and CD200 (mean 84% ± SEM 2.9 were uniformly strongly expressed, while CD270 (mean 74% ± SEM 4.7) and CD276 (mean 50% ± SEM 6.6) showed a weaker and more diverse expression, with no significant differences between the two backgrounds (all p 〉 .05). Similar expression patterns were observed in Eμ-TCL1 mice with spontaneously occurring CLL and transplanted transgenic mice, with no differences between spontaneous and induced CLL (all p 〉 .05). We then compared transgenic CD19+/CD5+ CLL cells to the WT CD19+ and the WT CD19+/CD5+ B1a-like cell population. Eμ-TCL1 CLL splenocytes showed a significant higher expression of CD274 and CD276 compared to expression on WT CD19+ (p 〈 .0001, p=.00349) splenocytes. When compared to WT B1a-like splenocytes, only CD274 was significantly higher expressed (p 〈 .0001). To clarify the impact of genetic strain, B6 and C3HB6-F1 were investigated separately: transgenic mice on the B6 background showed significantly higher expression of CD274 compared to WT B6 CD19+ (p=.0015) and WT B6 B1a-like (p 〈 .0001) splenocytes. In contrast, transgenic mice on the C3HB6-F1 background showed a significant higher expression of CD274 and CD276 compared to WT CD19+ (p=.0002, p=.00354) and WT B1a-like (p=.0005, p=.00384) splenocytes. These patterns substantiate differences of the expression of inhibitory ligands between the WT strains, but of note, these were not mirrored in TCL1 mice. In previous experiments, we used the Eμ-TCL1 model to investigate the polarization of F-actin and phosphotyrosine at the immune synapse between splenic autologous T-cells and APCs and subsequent effector function. Age-matched WT mice had a significantly higher accumulation than transgenic mice. To assess the functional role of inhibitory ligands, knock-down experiments using lentiviral shRNA and blocking antibodies are currently under way to assess if this restores immune synapse formation and T cell effector function in vivo. Conclusions: The inhibitory ligands CD200, CD270, CD274 and CD276 are expressed in vivo and appear to be of functional relevance for the anti-cancer immune response. They therefore represent attractive targets to restore T-cell effector function, which might be achieved by gene therapy approaches and blocking antibodies. Disclosures: Gribben: Celgene: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 564-564
    Abstract: Abstract 564 The ability to evade immune destruction is increasingly being recognised as a crucial feature of cancer cells. Chronic lymphocytic leukemia (CLL) is associated with profound defects in T-cell function, resulting in failure of anti-tumor immunity and increased susceptibility to infections. T cells from CLL patients exhibit functional defects and alterations in gene expression, that show similarities to exhausted T cells in chronic viral infections. However, it is unclear whether CLL T cells are truly exhausted, or whether these defects are restricted to expanded populations of CMV specific T cells. We investigated the phenotype and function of CD8+ T cells from CLL patients and controls matched for age and CMV-serostatus. We demonstrate an increased proportion of CCR7- effector T cells in both CLL patients and CMV-seropositive individuals (p 〈 0.05). CD8+ and CD4+ T cells from CLL patients had increased expression of exhaustion markers CD160 and CD244 irrespective of CMV-serostatus (p 〈 0.01), whereas increased PD1 expression on CD8+ T cells was limited to CMV-seronegative patients (p=0.002). CLL CD8+ T cells also showed functional defects in proliferation and cytotoxicity irrespective of CMV-serostatus, with the cytolytic defect caused by a combination of impaired granzyme B packaging into secretory vesicles and non-polarized degranulation. In contrast to virally-induced exhaustion, CLL T cells showed increased production of interferon-γ with increased T-BET expression (p 〈 0.01), normal IL-2 production, and no downregulation of IL-7R. Therefore, while CLL CD8+ T cells exhibit some features of T-cell exhaustion, they show important differences (Table 1). These findings also exclude CMV as the sole cause of T cell defects in CLL. Lenalidomide has recently been demonstrated to have significant clinical activity in CLL. Its mechanism of action in this disease is not well understood, but it thought to act primarily by a combination of CLL cell and immune cell activation. We therefore examined the ability of lenalidomide to repair the observed T cell defects by investigating the impact of this agent on the gene expression profiles and function of CLL T cells. Treatment of CLL CD8+ T cells with lenalidomide increased the expression of 137 genes, while 34 genes were downregulated. The most prominent changes in expression were of genes involved in cytoskeletal signaling including WASF1 (Wiskott-Aldrich syndrome protein, family member 1), and TPM2 (tropomyosin 2). There was also upregulation of genes involved in lymphocyte activation, including TNFSF4 (Tumor necrosis factor ligand superfamily, member 4: OX40L), LAG3 (Lymphocyte-activation gene 3), and TNF, and genes involved in cell proliferation such as IKZF1 (Ikaros) and GRN (Granulin). Although lenalidomide treatment or anti-CD3 stimulation alone had no impact on T-bet expression, co-treatment with both anti-CD3 stimulation and lenalidomide resulted in significantly enhanced T-bet expression and increased production of interferon-γ. In contrast, lenalidomide treatment alone was able to improve T cell cytotoxic function, associated with repair of trafficking of granzyme B into the immunological synapse. In conclusion, T cells from CLL patients exhibit features of T-cell pseudo-exhaustion that are present irrespective of CMV serostatus. Treatment of CLL T cells with lenalidomide results in upregulation of genes involved in proliferation, activation, and cytoskeletal pathways, resulting in repair of the functional T cell defects. Table 1. Comparison of the phenotypic and functional defects of T cells from CLL patients with T-cell “exhaustion” in chronic viral infections Exhausted T cells in chronic viral infections T cells from CLL patients Increased expression of inhibitory receptors Yes Yes Abnormal transcription factor profile Yes Yes Reduced proliferative potential Yes Yes Decreased expression of IL-7R (CD127) Yes No Decreased cytokine production ↓IL-2, ↓IFN-γ Yes No Impaired cytotoxicity Yes Yes Disclosures: Riches: Celgene: Research Funding. Gribben:Celgene: Honoraria; Roche: Honoraria; Pharmacyclics: Honoraria; GSK: Honoraria; Mundipharma: Honoraria; Gilead: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages