feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute
    UID:
    gbv_1778436900
    Format: 1 Online-Ressource (436 p.)
    ISBN: 9783039289059 , 9783039289066
    Content: Recent years have seen a paradigm shift in our understanding of groundwater–surface water interactions: surface water and aquifers were long considered discrete, separate entities; they are now understood as integral components of a surface–subsurface continuum. This book provides an overview of current research advances and innovative approaches in groundwater–surface water interactions. The 20 research articles and 1 communication cover a wide range of thematic scopes, scales, and experimental and modelling methods across different disciplines (hydrology, aquatic ecology, biogeochemistry, and environmental pollution). The book identifies current knowledge gaps and reveals the challenges in establishing standardized measurement, observation, and assessment approaches. It includes current hot topcis with environmental and societal relevance such as eutrophication, retention of legacy, and emerging pollutants (e.g., pharmaceuticals and microplastics), urban water interfaces, and climate change impacts. The book demonstrates the relevance of processes at groundwater–surface water interfaces for (1) regional water balances and (2) quality and quantity of drinking water resources. As such, this book represents the long-awaited transfer of the above-mentioned paradigm shift in understanding of groundwater–surface water interactions from science to practice
    Note: English
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute
    UID:
    almahu_9949281266802882
    Format: 1 electronic resource (436 p.)
    Content: Recent years have seen a paradigm shift in our understanding of groundwater–surface water interactions: surface water and aquifers were long considered discrete, separate entities; they are now understood as integral components of a surface–subsurface continuum. This book provides an overview of current research advances and innovative approaches in groundwater–surface water interactions. The 20 research articles and 1 communication cover a wide range of thematic scopes, scales, and experimental and modelling methods across different disciplines (hydrology, aquatic ecology, biogeochemistry, and environmental pollution). The book identifies current knowledge gaps and reveals the challenges in establishing standardized measurement, observation, and assessment approaches. It includes current hot topcis with environmental and societal relevance such as eutrophication, retention of legacy, and emerging pollutants (e.g., pharmaceuticals and microplastics), urban water interfaces, and climate change impacts. The book demonstrates the relevance of processes at groundwater–surface water interfaces for (1) regional water balances and (2) quality and quantity of drinking water resources. As such, this book represents the long-awaited transfer of the above-mentioned paradigm shift in understanding of groundwater–surface water interactions from science to practice.
    Note: English
    Additional Edition: ISBN 3-03928-905-5
    Additional Edition: ISBN 3-03928-906-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute
    UID:
    edocfu_9960405864002883
    Format: 1 electronic resource (436 p.)
    Content: Recent years have seen a paradigm shift in our understanding of groundwater–surface water interactions: surface water and aquifers were long considered discrete, separate entities; they are now understood as integral components of a surface–subsurface continuum. This book provides an overview of current research advances and innovative approaches in groundwater–surface water interactions. The 20 research articles and 1 communication cover a wide range of thematic scopes, scales, and experimental and modelling methods across different disciplines (hydrology, aquatic ecology, biogeochemistry, and environmental pollution). The book identifies current knowledge gaps and reveals the challenges in establishing standardized measurement, observation, and assessment approaches. It includes current hot topcis with environmental and societal relevance such as eutrophication, retention of legacy, and emerging pollutants (e.g., pharmaceuticals and microplastics), urban water interfaces, and climate change impacts. The book demonstrates the relevance of processes at groundwater–surface water interfaces for (1) regional water balances and (2) quality and quantity of drinking water resources. As such, this book represents the long-awaited transfer of the above-mentioned paradigm shift in understanding of groundwater–surface water interactions from science to practice.
    Note: English
    Additional Edition: ISBN 3-03928-905-5
    Additional Edition: ISBN 3-03928-906-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute
    UID:
    edoccha_9960405864002883
    Format: 1 electronic resource (436 p.)
    Content: Recent years have seen a paradigm shift in our understanding of groundwater–surface water interactions: surface water and aquifers were long considered discrete, separate entities; they are now understood as integral components of a surface–subsurface continuum. This book provides an overview of current research advances and innovative approaches in groundwater–surface water interactions. The 20 research articles and 1 communication cover a wide range of thematic scopes, scales, and experimental and modelling methods across different disciplines (hydrology, aquatic ecology, biogeochemistry, and environmental pollution). The book identifies current knowledge gaps and reveals the challenges in establishing standardized measurement, observation, and assessment approaches. It includes current hot topcis with environmental and societal relevance such as eutrophication, retention of legacy, and emerging pollutants (e.g., pharmaceuticals and microplastics), urban water interfaces, and climate change impacts. The book demonstrates the relevance of processes at groundwater–surface water interfaces for (1) regional water balances and (2) quality and quantity of drinking water resources. As such, this book represents the long-awaited transfer of the above-mentioned paradigm shift in understanding of groundwater–surface water interactions from science to practice.
    Note: English
    Additional Edition: ISBN 3-03928-905-5
    Additional Edition: ISBN 3-03928-906-3
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    UID:
    edochu_18452_22701
    Format: 1 Online-Ressource (15 Seiten)
    Content: The interactions of groundwater with surface waters such as streams, lakes, wetlands, or oceans are relevant for a wide range of reasons—for example, drinking water resources may rely on hydrologic fluxes between groundwater and surface water. However, nutrients and pollutants can also be transported across the interface and experience transformation, enrichment, or retention along the flow paths and cause impacts on the interconnected receptor systems. To maintain drinking water resources and ecosystem health, a mechanistic understanding of the underlying processes controlling the spatial patterns and temporal dynamics of groundwater–surface water interactions is crucial. This Special Issue provides an overview of current research advances and innovative approaches in the broad field of groundwater–surface water interactions. The 20 research articles and 1 communication of this Special Issue cover a wide range of thematic scopes, scales, and experimental and modelling methods across different disciplines (hydrology, aquatic ecology, biogeochemistry, environmental pollution) collaborating in research on groundwater–surface water interactions. The collection of research papers in this Special Issue also allows the identification of current knowledge gaps and reveals the challenges in establishing standardized measurement, observation, and assessment approaches. With regards to its relevance for environmental and water management and protection, the impact of groundwater–surface water interactions is still not fully understood and is often underestimated, which is not only due to a lack of awareness but also a lack of knowledge and experience regarding appropriate measurement and analysis approaches. This lack of knowledge exchange from research into management practice suggests that more efforts are needed to disseminate scientific results and methods to practitioners and policy makers.
    Content: Peer Reviewed
    In: Water, Basel : MDPI, 22,2020,1
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    UID:
    edochu_18452_27921
    Format: 1 Online-Ressource (18 Seiten)
    Content: Urban streams receive increasing loads of organic micropollutants from treated wastewaters. A comprehensive understanding of the in-stream fate of micropollutants is thus of high interest for water quality management. Bedforms induce pumping effects considerably contributing to whole stream hyporheic exchange and are hotspots of biogeochemical turnover processes. However, little is known about the transformation of micropollutants in such structures. In the present study, we set up recirculating flumes to examine the transformation of a set of micropollutants along single flowpaths in two triangular bedforms. We sampled porewater from four locations in the bedforms over 78 days and analysed the resulting concentration curves using the results of a hydrodynamic model in combination with a reactive transport model accounting for advection, dispersion, first-order removal and retardation. The four porewater sampling locations were positioned on individual flowpaths with median solute travel times ranging from 11.5 to 43.3 h as shown in a hydrodynamic model previously. Highest stability was estimated for hydrochlorothiazide on all flowpaths. Lowest detectable half-lives were estimated for sotalol (0.7 h) and sitagliptin (0.2 h) along the shortest flowpath. Also, venlafaxine, acesulfame, bezafibrate, irbesartan, valsartan, ibuprofen and naproxen displayed lower half-lives at shorter flowpaths in the first bedform. However, the behavior of many compounds in the second bedform deviated from expectations, where particularly transformation products, e.g. valsartan acid, showed high concentrations. Flowpath-specific behavior as observed for metformin or flume-specific behavior as observed for metoprolol acid, for instance, was attributed to potential small-scale or flume-scale heterogeneity of microbial community compositions, respectively. The results of the study indicate that the shallow hyporheic flow field and the small-scale heterogeneity of the microbial community are major controlling factors for the transformation of relevant micropollutants in river sediments.
    Content: Peer Reviewed
    In: London : Nature Publishing Group, 11,1
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    UID:
    edochu_18452_22596
    Format: 1 Online-Ressource (32 Seiten)
    Content: Rivers are important ecosystems under continuous anthropogenic stresses. The hyporheic zone is a ubiquitous, reactive interface between the main channel and its surrounding sediments along the river network. We elaborate on the main physical, biological, and biogeochemical drivers and processes within the hyporheic zone that have been studied by multiple scientific disciplines for almost half a century. These previous efforts have shown that the hyporheic zone is a modulator for most metabolic stream processes and serves as a refuge and habitat for a diverse range of aquatic organisms. It also exerts a major control on river water quality by increasing the contact time with reactive environments, which in turn results in retention and transformation of nutrients, trace organic compounds, fine suspended particles, and microplastics, among others. The paper showcases the critical importance of hyporheic zones, both from a scientific and an applied perspective, and their role in ecosystem services to answer the question of the manuscript title. It identifies major research gaps in our understanding of hyporheic processes. In conclusion, we highlight the potential of hyporheic restoration to efficiently manage and reactivate ecosystem functions and services in river corridors.
    Content: Peer Reviewed
    In: Basel : MDPI, 11,11, Seiten -2230
    Language: English
    URL: Volltext  (kostenfrei)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages