Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood Cancer Discovery, American Association for Cancer Research (AACR), Vol. 3, No. 6 ( 2022-11-02), p. 516-535
    Abstract: Despite the expanding portfolio of targeted therapies for adults with acute myeloid leukemia (AML), direct implementation in children is challenging due to inherent differences in underlying genetics. Here we established the pharmacologic profile of pediatric AML by screening myeloblast sensitivity to approved and investigational agents, revealing candidates of immediate clinical relevance. Drug responses ex vivo correlated with patient characteristics, exhibited age-specific alterations, and concorded with activities in xenograft models. Integration with genomic data uncovered new gene–drug associations, suggesting actionable therapeutic vulnerabilities. Transcriptome profiling further identified gene-expression signatures associated with on- and off-target drug responses. We also demonstrated the feasibility of drug screening–guided treatment for children with high-risk AML, with two evaluable cases achieving remission. Collectively, this study offers a high-dimensional gene–drug clinical data set that could be leveraged to research the unique biology of pediatric AML and sets the stage for realizing functional precision medicine for the clinical management of the disease. Significance: We conducted integrated drug and genomic profiling of patient biopsies to build the functional genomic landscape of pediatric AML. Age-specific differences in drug response and new gene–drug interactions were identified. The feasibility of functional precision medicine–guided management of children with high-risk AML was successfully demonstrated in two evaluable clinical cases. This article is highlighted in the In This Issue feature, p. 476
    Type of Medium: Online Resource
    ISSN: 2643-3230 , 2643-3249
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood Advances, American Society of Hematology, Vol. 5, No. 21 ( 2021-11-09), p. 4380-4392
    Abstract: Homing and engraftment of hematopoietic stem/progenitor cells (HSPCs) into the bone marrow (BM) microenvironment are tightly regulated by the chemokine stromal cell–derived factor-1 (SDF-1) and its G-protein–coupled receptor C-X-C motif chemokine receptor 4 (CXCR4), which on engagement with G-protein subunits, trigger downstream migratory signals. Regulators of G-protein signaling (RGS) are GTPase-accelerating protein of the Gα subunit and R4 subfamily members have been implicated in SDF-1–directed trafficking of mature hematopoietic cells, yet their expression and influence on HSPCs remain mostly unknown. Here, we demonstrated that human CD34+ cells expressed multiple R4 RGS genes, of which RGS1, RGS2, RGS13, and RGS16 were significantly upregulated by SDF-1 in a CXCR4-dependent fashion. Forced overexpression of RGS1, RGS13, or RGS16 in CD34+ cells not only inhibited SDF-1–directed migration, calcium mobilization, and phosphorylation of AKT, ERK, and STAT3 in vitro, but also markedly reduced BM engraftment in transplanted NOD/SCID mice. Genome-wide microarray analysis of RGS-overexpressing CD34+ cells detected downregulation of multiple effectors with established roles in stem cell trafficking/maintenance. Convincingly, gain-of-function of selected effectors or ex vivo priming with their ligands significantly enhanced HSPC engraftment. We also constructed an evidence-based network illustrating the overlapping mechanisms of RGS1, RGS13, and RGS16 downstream of SDF-1/CXCR4 and Gαi. This model shows that these RGS members mediate compromised kinase signaling and negative regulation of stem cell functions, complement activation, proteolysis, and cell migration. Collectively, this study uncovers an essential inhibitory role of specific R4 RGS proteins in stem cell engraftment, which could potentially be exploited to develop improved clinical HSPC transplantation protocols.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical and Translational Medicine, Wiley, Vol. 13, No. 11 ( 2023-11)
    Abstract: Gastric cancer (GC) is one of the most common tumours in East Asia countries and is associated with Helicobacter pylori infection. H. pylori utilizes virulence factors, CagA and VacA, to up‐regulate pro‐inflammatory cytokines and activate NF‐κB signaling. Meanwhile, the PIEZO1 upregulation and cancer‐associated fibroblast (CAF) enrichment were found in GC progression. However, the mechanisms of PIEZO1 upregulation and its involvement in GC progression have not been fully elucidated. Methods The CAF enrichment and clinical significance were investigated in animal models and primary samples. The expression of NF‐κB and PIEZO1 in GC was confirmed by immunohistochemistry staining, and expression correlation was analysed in multiple GC datasets. GSEA and Western blot analysis revealed the YAP1‐CTGF axis regulation by PIEZO1. The stimulatory effects of CTGF on CAFs were validated by the co‐culture system and animal studies. Patient‐derived organoid and peritoneal dissemination models were employed to confirm the role of the PIEZO1‐YAP1‐CTGF cascade in GC. Results Both CAF signature and PIEZO1 were positively correlated with H. pylori infection. PIEZO1, a mechanosensor, was confirmed as a direct downstream of NF‐κB to promote the transformation from intestinal metaplasia to GC. Mechanistic studies revealed that PIEZO1 transduced the oncogenic signal from NF‐κB into YAP1 signaling, a well‐documented oncogenic pathway in GC progression. PIEZO1 expression was positively correlated with the YAP1 signature (CTGF, CYR61, and c‐Myc, etc.) in primary samples. The secreted CTGF by cancer cells stimulated the CAF infiltration to form a stiffened collagen‐enrichment microenvironment, thus activating PIEZO1 to form a positive feedback loop. Both PIEZO1 depletion by shRNA and CTGF inhibition by Procyanidin C1 enhanced the efficacy of 5‐FU in suppressing the GC cell peritoneal metastasis. Conclusion This study elucidates a novel driving PIEZO1‐YAP1‐CTGF force, which opens a novel therapeutic avenue to block the transformation from precancerous lesions to GC. H. pylori ‐NF‐κB activates the PIEZO1‐YAP1‐CTGF axis to remodel the GC microenvironment by promoting CAF infiltration. Targeting PIEZO1‐YAP1‐CTGF plus chemotherapy might serve as a potential therapeutic option to block GC progression and peritoneal metastasis.
    Type of Medium: Online Resource
    ISSN: 2001-1326 , 2001-1326
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2697013-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 3 ( 2020-03), p. 709-720
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1169-1169
    Abstract: Migration, homing and engraftment of hematopoietic stem/progenitor cells depend critically on the SDF-1/CXCR4 axis. We previously identified the tetraspanin CD9 as a downstream signal of this axis, and it regulates short-term homing of cord blood (CB) CD34+ cells (Leung et al, Blood, 2011). However, its roles in stem cell engraftment, mobilization and the underlying mechanisms have not been described. Here, we provided evidence that CD9 blockade profoundly reduced long-term bone marrow (BM; 70.9% inhibition; P = .0089) and splenic engraftment (87.8% inhibition; P = .0179) of CB CD34+ cells (n = 6) in the NOD/SCID mouse xenotransplantation model, without biasing specific lineage commitment. Interestingly, significant increase in the CD34+CD9+ subsets were observed in the BM (9.6-fold; P 〈 .0001) and spleens (9.8-fold; P = .0014) of engrafted animals (n = 3-4), indicating that CD9 expression on CD34+ cells is up-regulated during engraftment in the SDF-1-rich hematopoietic niches. Analysis of paired BM and peripheral blood (PB) samples from healthy donors revealed higher CD9 expressions in BM-resident CD34+ cells (46.0% CD9+ cells in BM vs 26.5% in PB; n = 13, P = .0035). Consistently, CD34+ cells in granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood (MPB) expressed lower levels of CD9 (32.3% CD9+ cells; n = 25), when compared with those in BM (47.7% CD9+ cells; n = 16, P = .0030). In vitro exposure of MPB CD34+ cells to SDF-1 significantly enhanced CD9 expression (1.5-fold increase; n = 4, P = .0060). Treatment of NOD/SCID chimeric mice with G-CSF decreased the CD34+CD9+ subsets in the BM from 79.2% to 62.4% (n = 8, P = .0179). These data indicate that CD9 expression is down-regulated during egress or mobilization of CD34+ cells. To investigate the possible mechanisms, we performed a VCAM-1 (counter receptor of the VLA-4 integrin) binding assay on BM CD34+ cells. Our results demonstrated that CD34+CD9+ cells preferentially bound to soluble VCAM-1 (17.2%-51.4% VCAM-1-bound cells in CD9+ cells vs 12.8%-25.9% in CD9- cells; n = 10, P ≤ .0003), suggesting that CD9+ cells possess higher VLA-4 activity. Concomitant with decreased CD9 expression, MPB CD34+ cells exhibited lower VCAM-1 binding ability (2.8%-4.0% VCAM-1-bound cells; n = 3), when compared to BM CD34+ cells (15.5%-37.7%; n = 10, P 〈 .0130). In vivo treatment of NOD/SCID chimeric mice with G-CSF reduced VCAM-1 binding of CD34+ cells in the BM by 49.0% (n = 5, P = .0010). Importantly, overexpression of CD9 in CB CD34+ cells promoted VCAM-1 binding by 39.5% (n = 3, P = .0391), thus providing evidence that CD9 regulates VLA-4 activity. Preliminary results also indicated that enforcing CD9 expression in CB CD34+ cells could enhance their homing and engraftment in the NOD/SCID mouse model. Our findings collectively established that CD9 expression and associated integrin VLA-4 activity are dynamically regulated in the BM microenvironment, which may represent important events in governing stem cell engraftment and mobilization. Strategies to modify CD9 expression could be developed to enhance engraftment or mobilization of CD34+ cells. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2371-2371
    Abstract: The stromal cell-derived factor-1 (SDF-1)/chemokine C-X-C receptor 4 (CXCR4) axis is crucial to migration and homing of hematopoietic stem/progenitor cells (HSC). In a previous study, we reported the expression profile of human cord blood CD34+ cells in response to a short-term exposure of SDF-1 (Leung et al, Blood, 2011). We further identified that expression levels of several R4 Regulator of G-protein signaling (RGS) family proteins were upregulated upon SDF-1 treatment. RGS family proteins are known to negatively control G-protein-coupled receptor signal transduction through their GTPase-accelerating activity. In several types of hematopoietic cells (e.g., B lymphocytes), responses to SDF-1 are subjected to regulation by RGS proteins. However, their expression patterns and functional roles in HSC are poorly characterized. We first assessed the basal expressions of 10 R4 RGS proteins by quantitative RT-PCR. Our results demonstrated that cord blood CD34+ cells expressed relatively high mRNA level of RGS1, RGS2 and RGS3, and moderate level of RGS5, RGS13, RGS16 and RGS18 (n = 3). Expression of RGS8 was barely detectable, while RGS4 and RGS21 expression was not detectable. A short-term exposure (1-24 hours) of CD34+ cells to SDF-1 (100 ng/mL, n = 4) significantly increased expressions of RGS1 (1.5 fold, P = .002), RGS13 (1.8 fold, P = .044), and to a lesser extent RGS2 and RGS3 (both 1.3 fold; P 〈 .032). Expressions of RGS5, RGS16 and RGS18 were not affected by SDF-1 stimulation. Preincubation of CD34+ cells with the CXCR4 antagonist AMD3100 resulted in 82.2% and 56.2% inhibition of SDF-1-induced RGS1 and RGS13 expressions respectively. To investigate the functional roles of RGS1 and RGS13 in SDF-1-mediated responses, we introduced GFP-tagged cDNA clones into cord blood CD34+ cells by lentiviral transduction. Using the spleen focus-forming virus (SFFV) promoter, we achieved 55.2% transduction efficiency in control GFP vector-transduced cells, 39.4% in RGS1-transduced cells and 51.7% in RGS13-transduced cells. Quantitative RT-PCR further confirmed RGS1 (76 fold) and RGS13 (3,641 fold) overexpression in transduced CD34 cells. We showed that SDF-1-directed migration was inhibited by 18.5% in RGS1-transduced cells, but not in RGS13-transduced cells. In RGS1-transduced cells, significantly less GFP+ cells was found in the migrating fraction (51% in non-migrating vs 28% in migrating fraction). We further demonstrated that actin polymerization, an early response to SDF-1 stimulus, was reduced by 9.5% in RGS13-transduced cells but not in RGS1-transduced cells. In the NOD/SCID mouse xenotransplantation model, preliminary results showed that bone marrow homing of CD34+ cells was impaired in RGS1-overexpressing (54.4% reduction) or RGS13-overexpressing (28.1% reduction) cells, when compared to control GFP-transduced cells. Splenic homing of CD34+ cells was not affected by either RGS1 or RGS13. Taken together, we provided the first expression profile of R4 RGS proteins in cord blood CD34+ cells, and their expressional changes in response to SDF-1 stimulation. We also provided evidence that RGS1 and RGS13 regulate specific SDF-1-mediated responses and, importantly, both negatively affect homing of CD34+ cells. Strategies to inhibit RGS1 or RGS13 signaling could be a potential method for enhancing HSC homing and their long-term engraftment for immunologic reconstitution. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Molecular Cancer, Springer Science and Business Media LLC, Vol. 20, No. 1 ( 2021-12)
    Type of Medium: Online Resource
    ISSN: 1476-4598
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2091373-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 5048-5048
    Abstract: RGS family proteins are known to negatively regulate G-protein-coupled receptor signaling through their GTPase-accelerating activity. In several types of hematopoietic cells (e.g., B lymphocytes and megakaryocytes), responses to stromal cell-derived factor-1 (SDF-1) are subjected to regulation by R4 subfamily RGS proteins. However, their expression patterns and functional roles in hematopoietic stem and progenitor cells (HSC) are poorly characterized. Here, we showed that human CD34+ HSC derived from cord blood (CB, n = 10) expressed 7 out of 10 R4 RGS proteins at mRNA level (RGS1-3, 5, 13, 16 and 18), whereas expressions of RGS4, 8 and 21 were undetectable. Exposure of CB CD34+ cells to SDF-1 significantly increased RGS1, 2, 13 and 16 expressions and decreased RGS3 and 18 expressions (P ≤ 0.0402, n = 5). Expressions of RGS1, 13 and 16 were significantly higher in bone marrow (BM, n = 10) CD34+ cells when compared to mobilized peripheral blood (MPB, n = 5) CD34+ cells (P ≤ 0.0160), while RGS3 and 18 expressions were lower in BM CD34+ cells (P ≤ 0.0471), suggesting a SDF-1- and niche-dependent regulation of RGS expressions. To investigate the potential involvement of RGS proteins in SDF-1-mediated homing-related functions, we introduced RGS overexpression constructs into CB CD34+ cells by lentiviral transduction. With 〉 80% transduction efficiency, we showed that overexpression of RGS1, 13 and 16 but not RGS2 significantly inhibited migration of CD34+ cells to a SDF-1 gradient (P ≤ 0.0391, n = 4-5). Similarly, RGS1, 13 and 16 overexpression suppressed SDF-1-induced Akt phosphorylation (n = 2), but none of them affected SDF-1-mediated actin polymerization (n = 3). In the NOD/SCID mouse xenotransplantation model, preliminary results showed that bone marrow homing was impaired in RGS1- (16.3% reduction), RGS13- (12.7% reduction) or RGS16-overexpressing CD34+ cells (33.7% reduction). Taken together, we provided the first evidence that expressions of R4 RGS proteins are regulated by the SDF-1/CXCR4 axis in human CD34+ HSC. We also presented evidence that specific R4 RGS proteins (RGS1, 13 and 16) negatively regulate in vitro SDF-1-mediated responses and in vivo homing of CD34+ cells, suggesting that RGS proteins may serve as a feedback mechanism to regulate SDF-1/CXCR4 signaling. Strategies to inhibit RGS signaling could thus be a potential method for enhancing efficiency of HSC homing and long-term engraftment, which is particularly important in the setting of CB transplantation. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2022
    In:  Journal of Leukocyte Biology Vol. 112, No. 4 ( 2022-09-30), p. 785-797
    In: Journal of Leukocyte Biology, Oxford University Press (OUP), Vol. 112, No. 4 ( 2022-09-30), p. 785-797
    Abstract: G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein–protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
    Type of Medium: Online Resource
    ISSN: 0741-5400 , 1938-3673
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2026833-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Fertility and Sterility, Elsevier BV, Vol. 114, No. 2 ( 2020-08), p. 426-435
    Type of Medium: Online Resource
    ISSN: 0015-0282
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 1500469-7
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages