Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Li, Xiang  (4)
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  BMC Plant Biology Vol. 23, No. 1 ( 2023-05-29)
    In: BMC Plant Biology, Springer Science and Business Media LLC, Vol. 23, No. 1 ( 2023-05-29)
    Abstract: Cadmium (Cd) pollution of soils is a global concern because its accumulation in plants generates severe growth retardation and health problems. Hibiscus syriacus is an ornamental plant that can tolerate various abiotic stresses, including Cd stress. Therefore, it is proposed as a plant material in Cd-polluted areas. However, the molecular mechanisms of H. syriacus tolerance to Cd are not yet understood. Results This study investigated the physiological and transcriptional response of “Hongxing”, a Cd 2+ -tolerant H. syriacus variety, grown on a substrate containing higher concentration of Cd (400 mg/kg). The Cd treatment induced only 28% of plant mortality, but a significant decrease in the chlorophyll content was observed. Malondialdehyde content and activity of the antioxidant enzymes catalase, peroxidase, and superoxide dismutase were significantly increased under Cd stress. Transcriptome analysis identified 29,921 differentially expressed genes (DEGs), including 16,729 down-regulated and 13,192 up-regulated genes, under Cd stress. Functional enrichment analyses assigned the DEGs mainly to plant hormone signal transduction, transport, nucleosome and DNA processes, mitogen-activated protein kinase signaling pathway, antioxidant process, fatty acid metabolism, and biosynthesis of secondary metabolites. Many MYB, EP2/ERF, NAC, WRKY family genes, and genes containing metal binding domains were up-regulated, implying that they are essential for the Cd-stress response in H. syriacus . The most induced genes were filtered out, providing valuable resources for future studies. Conclusions Our findings provide insights into the molecular responses to Cd stress in H. syriacus . Moreover, this study offers comprehensive and important resources for future studies toward improving the plant Cd tolerance and its valorization in phytoremediation.
    Type of Medium: Online Resource
    ISSN: 1471-2229
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2059868-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: BMC Plant Biology, Springer Science and Business Media LLC, Vol. 23, No. 1 ( 2023-02-01)
    Abstract: Cymbidium ensifolium L. is known for its ornamental value and is frequently used in cosmetics. Information about the salt stress response of C. ensifolium is scarce. In this study, we reported the physiological and transcriptomic responses of C. ensifolium leaves under the influence of 100 mM NaCl stress for 48 (T48) and 96 (T96) hours. Results Leaf Na + content, activities of the antioxidant enzymes i.e., superoxide dismutase, glutathione S-transferase, and ascorbate peroxidase, and malondialdehyde content were increased in salt-stressed leaves of C. ensifolium . Transcriptome analysis revealed that a relatively high number of genes were differentially expressed in CKvsT48 (17,249) compared to CKvsT96 (5,376). Several genes related to salt stress sensing (calcium signaling, stomata closure, cell-wall remodeling, and ROS scavenging), ion balance (Na + and H + ), ion homeostasis (Na + /K + ratios), and phytohormone signaling (abscisic acid and brassinosteroid) were differentially expressed in CKvsT48, CKvsT96, and T48vsT96. In general, the expression of genes enriched in these pathways was increased in T48 compared to CK while reduced in T96 compared to T48. Transcription factors (TFs) belonging to more than 70 families were differentially expressed; the major families of differentially expressed TFs included bHLH, NAC, MYB, WRKY, MYB-related, and C3H. A Myb-like gene ( CenREV3 ) was further characterized by overexpressing it in Arabidopsis thaliana . CenREV3’s expression was decreased with the prolongation of salt stress. As a result, the CenREV3- overexpression lines showed reduced root length, germination %, and survival % suggesting that this TF is a negative regulator of salt stress tolerance. Conclusion These results provide the basis for future studies to explore the salt stress response-related pathways in C. ensifolium.
    Type of Medium: Online Resource
    ISSN: 1471-2229
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2059868-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Oxidative Medicine and Cellular Longevity, Hindawi Limited, Vol. 2022 ( 2022-10-3), p. 1-13
    Abstract: Objective. To explore the mechanisms of TLR9 from macrophages on mitochondrial apoptosis in cardiomyocytes at early stage of sepsis. Methods. The in vivo and in vitro sepsis mice were bone marrow transplantation (BMT) with wild type (WT) or (toll-like receptor 9) TLR9 knockout (-/- or KO) myeloid cells and then constructed by cecum ligation and puncture (CLP) as vivo experiment and cardiomyocytes cocultured with WT or TLR9-deficient macrophages treated with LPS as vitro experiment, respectively. Sepsis model were performed by CLP. The expression levels of exosome, PI3K/AKT, and ERK1/2, inflammatory factors, and apoptotic proteins were tested by western blot in vivo. Besides, associated apoptotic proteins and JC-1 fluorescence assay were tested in vitro. Results. The expressions of p-PI3K, p-AKT, exosome markers (CD9, CD63, and TSG101), p-ERK1/2, TNF-α, IFN-γ, IL-1β, and cleaved-caspase-3/-9 were significantly increased in septic mice vs. control mice, and these proteins were declined dramatically in TLR9-/- BMT mice vs. WT BMT mice in sepsis mice models. Meanwhile, the protein expression of cytochrome C, cleaved-caspase-3, and cleaved-caspase-9 increased significantly in primary mouse myocardial cells cocultured with TLR9-/- or WT macrophages stimulated with LPS, and these mitochondrial apoptotic proteins as well as the green 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) fluorescence were dramatically lower in LPS-stimulated cardiomyocytes cocultured with TLR9-/- than with WT macrophages. Conclusion. TLR9-/- in macrophages suppressed the inflammatory reaction as well as the exosome secretion and resulted in the inhibition of apoptosis and oxidative stress in sepsis-induced cardiomyopathy.
    Type of Medium: Online Resource
    ISSN: 1942-0994 , 1942-0900
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2455981-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Plant Science Vol. 13 ( 2022-10-24)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 13 ( 2022-10-24)
    Abstract: Phoebe bournei (Hemsl.) Yang is used as a commercial wood in China and is enlisted as a near-threatened species. Prolonged droughts pose a serious threat to young seedlings (1-2 years old). A transcriptome sequencing approach, together with the measurement of growth parameters and biochemical analyses were used to understand P. bournei’s drought responses on 15d, 30d, and 45d of drought stress treatment. The stem and root dry weights decreased significantly with drought stress duration. Activities of antioxidative enzymes i.e., peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) increased significantly with the increase in drought stress duration. A total of 13,274, 15,648, and 9,949 genes were differentially expressed in CKvs15d, CKvs30d, and CKvs45d, respectively. The differential expression analyses showed that photosystem I and II underwent structural changes, chlorophyll biosynthesis, and photosynthesis were reduced. The genes annotated as POD, SOD, and CAT were upregulated in drought-treated leaves as compared to control. Additionally, plant-hormone signal transduction, MAPK signaling-plant, phenylpropanoid biosynthesis, flavonoid biosynthesis, and starch and sucrose metabolism pathways showed large-scale expression changes in major genes. We also found that members of 25 transcription factor families were differentially expressed. Our study presents and discusses these transcriptome signatures. Overall, our findings represent key data for breeding towards drought stress tolerance in P. bournei .
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages