Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Porto, Patricia I.  (4)
  • 2000-2004  (4)
  • 1
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 38, No. 3 ( 2001-09), p. 683-687
    Abstract: Abstract — — In essential hypertension, a polygenic and multifactorial syndrome, several genes interact with the environment to produce high blood pressure. Thyrotropin-releasing hormone (TRH) plays an important role in central cardiovascular regulation. We have described that TRH overexpression induces hypertension in a normal rat, which was reversed by TRH antisense treatment. This treatment also reduces the central TRH hyperactivity in spontaneously hypertensive rats and normalizes blood pressure. Human TRH receptor (TRHR) belongs to the G protein-coupled seven-transmembrane domain receptor superfamily. Mutations of these receptors may result in constitutive activation. As it has been demonstrated that hypertensive patients have a blunted TSH response to TRH injection, suggesting a defect in the TRHR, we postulate that the TRHR gene is involved in human hypertension. We studied 2 independent populations from different geographic regions of our country: a sample of adult subjects from a referral clinic and a population-based sample of high school students. In search of molecular variants of TRHR, we disclosed that a polymorphic TG dinucleotide repeat (STR) at −68 bp and a novel single nucleotide polymorphism, a G→C conversion at −221 located in the promoter of the TRHR are associated with essential hypertension. As STRs detected in gene promoters are potential Z-DNA-forming sequences and seem to affect gene expression, we studied the potentially different transcriptional activity of these TRHR promoter variants and found that the S/−221C allele has a higher affinity than does the L/G−221 allele to nuclear protein factor(s). Our findings support the hypothesis that the TRHR gene participates in the etiopathogenesis of essential hypertension.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2001
    detail.hit.zdb_id: 2094210-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Informa UK Limited ; 2003
    In:  Clinical and Experimental Hypertension Vol. 25, No. 2 ( 2003-01), p. 117-130
    In: Clinical and Experimental Hypertension, Informa UK Limited, Vol. 25, No. 2 ( 2003-01), p. 117-130
    Type of Medium: Online Resource
    ISSN: 1064-1963 , 1525-6006
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2003
    detail.hit.zdb_id: 2026245-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 37, No. 2 ( 2001-02), p. 365-370
    Abstract: Thyrotropin-releasing hormone (TRH) plays an important role in central cardiovascular regulation. Recently, we described that the TRH precursor gene overexpression induces hypertension in the normal rat. In addition, we published that spontaneously hypertensive rats (SHR) have central extrahypothalamic TRH hyperactivity with increased TRH synthesis and release and an elevated TRH receptor number. In the present study, we report that intracerebroventricular antisense (AS) treatment with a phosphorothioate oligonucleotide against the TRH precursor gene significantly diminished up to 72 hours and in a dose-dependent manner the increased diencephalic TRH content, whereas normalized systolic blood pressure (SABP) was present in the SHR compared with Wistar-Kyoto (WKY) rats. Although basal thyrotropin was higher in SHR compared with WKY rats and this difference disappeared after antisense treatment, no differences were observed in plasma T4 or T3 between strains with or without AS treatment, indicating that the effect of the AS on SABP was independent of the thyroid status. Because the encephalic renin-angiotensin system seems to be crucial in the development and/or maintenance of hypertension in SHR, we investigated the effect of antisense inhibition of TRH on that system and found that TRH antisense treatment significantly diminished the elevated diencephalic angiotensin II (Ang II) content in the SHR without any effect in control animals, suggesting that the Ang II system is involved in the TRH cardiovascular effects. To summarize, the central TRH system seems to be involved in the etiopathogenesis of hypertension in this model of essential hypertension.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2001
    detail.hit.zdb_id: 2094210-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2002
    In:  Hypertension Vol. 39, No. 2 ( 2002-02), p. 491-495
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 39, No. 2 ( 2002-02), p. 491-495
    Abstract: Abstract— Leptin, an adipocyte-released hormone, modifies food intake and energy expenditure regulating hypothalamic-pituitary-thyroid axis function. We previously reported that thyrotropin-releasing hormone (TRH) precursor gene overexpression induces hypertension in the normal rat and that spontaneously hypertensive rats have central TRH hyperactivity with increased TRH synthesis and release and an elevated TRH receptor number. In both models, intracerebroventricular antisense (AS) treatment against the TRH precursor produced a dose-dependent reduction of the increased diencephalic TRH content while normalizing high arterial blood pressure. In this article, we report that male Wistar rats that were made hypertensive by intracerebroventricular injection of a eucaryotic expression plasmid containing the pre-TRH cDNA showed decreased leptin plasma levels and that pre-TRH AS treatment reversed this phenomenon. In addition, male and female spontaneously hypertensive rats showed lower levels of circulating leptin than did sex-matched Wistar-Kyoto control rats. This difference also was abated by the pre-TRH AS treatment. Conversely, 20 μg ICV leptin induced a long-lasting pressor effect (18±5 mm Hg, n=6, P 〈 0.01, 〉 60 minutes) that was not observed in pre-TRH AS pretreated rats (2±3 mm Hg, n=6) but persisted in rats used as controls that were treated with inverted oligonucleotide (20±6 mm Hg, n=4, P 〈 0.01). These data suggest that in rats with TRH-induced hypertension, leptin is decreased, inducing compensatory adiposity. We propose that because leptin produces central TRH synthesis and release, obesity may induce hypertension through TRH system activation and that the TRH-leptin interaction may thus contribute to the strong association between hypertension and obesity.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2002
    detail.hit.zdb_id: 2094210-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages