feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ritter, Christoph  (4)
  • 2020-2024  (4)
  • 2023  (4)
  • 1
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 16, No. 7 ( 2023-04-12), p. 1865-1879
    Abstract: Abstract. Arctic amplification, the phenomenon that the Arctic is warming faster than the global mean, is still not fully understood. The Transregional Collaborative Research Centre “TRR 172: ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3” program, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), contributes towards this research topic. For the purpose of measuring aerosol components, a Fourier transform infrared spectrometer (FTIR), for measuring downwelling emission (in operation since 2019), and a Raman lidar are operated at the joint Alfred Wegener Institute for Polar and Marine Research and Paul Emile Victor Institute (AWIPEV) research base in Ny-Ålesund, Spitsbergen (79∘ N, 12∘ E). To carry out aerosol retrieval using measurements from the FTS, the LBLDIS retrieval algorithm, based on a combination of the Line-by-Line Radiative Transfer Model (LBLRTM) and the DIScrete Ordinate Radiative Transfer (DISORT) algorithm, is modified for different aerosol types (dust, sea salt, black carbon, and sulfate), aerosol optical depth (AOD), and effective radius (Reff). Using lidar measurement, an aerosol and cloud classification method is developed to provide basic information about the distribution of aerosols or clouds in the atmosphere and is used as an indicator to perform aerosol or cloud retrievals with the FTS. Therefore, a two-instrument joint-observation scheme is designed and subsequently used on the data measured from 2019 to the present. In order to introduce this measurement technique in detail, an aerosol-only case study is presented using data from 10 June 2020. In the aerosol-only case, the retrieval results show that sulfate is the dominant aerosol throughout the day (τ900cm-1 = 0.007 ± 0.0027), followed by dust (τ900cm-1 = 0.0039 ± 0.0029) and black carbon (τ900cm-1 = 0.0017 ± 0.0007). Sea salt (τ900cm-1 = 0.0012 ± 0.0002), which has the weakest emission ability in the infrared wave band, shows the lowest AOD value. Such proportions of sulfate, dust, and BC also show good agreement with Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) reanalysis data. Additionally, comparison with a Sun photometer (AErosol RObotic NETwork – AERONET) shows the daily variation in the AOD retrieved from FTS to be similar to that retrieved by Sun photometer. Using this method, long-term observations (from April to August 2020) are retrieved and presented. We find that sulfate is often present in the Arctic; it is higher in spring and lower in summer. Similarly, BC is also frequently observed in the Arctic, with less obvious seasonal variation than sulfate. A BC outburst event is observed each spring and summer. In spring, sulfate and BC are dominant, whereas sea salt and dust are relatively low. In addition, a sea salt enhancement event is observed in summertime, which might be due to the melting of sea ice and emissions from nearby open water. From the retrieved results over a long time period, no clear correlations are found; thus, the aforementioned species can be retrieved independently of one another.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2505596-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cerebral Cortex, Oxford University Press (OUP), Vol. 33, No. 7 ( 2023-03-21), p. 4013-4025
    Abstract: Sexual orientation in humans represents a multilevel construct that is grounded in both neurobiological and environmental factors. Objective Here, we bring to bear a machine learning approach to predict sexual orientation from gray matter volumes (GMVs) or resting-state functional connectivity (RSFC) in a cohort of 45 heterosexual and 41 homosexual participants. Methods  In both brain assessments, we used penalized logistic regression models and nonparametric permutation. Results  We found an average accuracy of 62% (±6.72) for predicting sexual orientation based on GMV and an average predictive accuracy of 92% (±9.89) using RSFC. Regions in the precentral gyrus, precuneus and the prefrontal cortex were significantly informative for distinguishing heterosexual from homosexual participants in both the GMV and RSFC settings. Conclusions  These results indicate that, aside from self-reports, RSFC offers neurobiological information valuable for highly accurate prediction of sexual orientation. We demonstrate for the first time that sexual orientation is reflected in specific patterns of RSFC, which enable personalized, brain-based predictions of this highly complex human trait. While these results are preliminary, our neurobiologically based prediction framework illustrates the great value and potential of RSFC for revealing biologically meaningful and generalizable predictive patterns in the human brain.
    Type of Medium: Online Resource
    ISSN: 1047-3211 , 1460-2199
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1483485-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Copernicus GmbH ; 2023
    In:  Atmospheric Measurement Techniques Vol. 16, No. 17 ( 2023-09-06), p. 4009-4014
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 16, No. 17 ( 2023-09-06), p. 4009-4014
    Abstract: Abstract. Possible interference sources for our aerosol lidar setup with transient recorders have been assessed. This was done by two methods: a spectrum analysis of the lidar signals in order to detect radio-frequency interference and measurements of the electromagnetic interference caused by the laser power supply. We found disturbances in the analog channels of the transient recorders, presumably caused by aging effects of our older recorders. An easy method on how the signal-to-noise ratio can be improved retrospectively is presented. We also show that the usage of two-way radio at our location leads to a noticeable radio-frequency interference in the lidar profiles. Further, we present measurements of the electromagnetic interference caused by the laser power supply, which may lead to disturbances in the lidar profiles if the transient recorders are placed next to it.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2505596-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Science of The Total Environment, Elsevier BV, Vol. 903 ( 2023-12), p. 166173-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages