Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 664 ( 2022-08), p. L15-
    Abstract: Context. Stellar occultation is a powerful technique that allows the determination of some physical parameters of the occulting object. The result depends on the photometric accuracy, the temporal resolution, and the number of chords obtained. Space telescopes can achieve high photometric accuracy as they are not affected by atmospheric scintillation. Aims. Using ESA’s CHEOPS space telescope, we observed a stellar occultation by the transneptunian object (50000) Quaoar. We compare the obtained chord with previous occultations by this object and determine its astrometry with sub-milliarcsecond precision. Also, we determine upper limits to the presence of a global methane atmosphere on the occulting body. Methods. We predicted and observed a stellar occultation by Quaoar using the CHEOPS space telescope. We measured the occultation light curve from this dataset and determined the dis- and reappearance of the star behind the occulting body. Furthermore, a ground-based telescope in Australia was used to constrain Quaoar’s limb. Combined with results from previous works, these measurements allowed us to obtain a precise position of Quaoar at the occultation time. Results. We present the results obtained from the first stellar occultation by a transneptunian object using a space telescope orbiting Earth; it was the occultation by Quaoar observed on 2020 June 11. We used the CHEOPS light curve to obtain a surface pressure upper limit of 85 nbar for the detection of a global methane atmosphere. Also, combining this observation with a ground-based observation, we fitted Quaoar’s limb to determine its astrometric position with an uncertainty below 1.0 mas. Conclusions. This observation is the first of its kind, and it shall be considered as a proof of concept of stellar occultation observations of transneptunian objects with space telescopes orbiting Earth. Moreover, it shows significant prospects for the James Webb Space Telescope.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 670 ( 2023-2), p. A24-
    Abstract: Context. Stellar granulation generates fluctuations in photometric and spectroscopic data whose properties depend on the stellar type, composition, and evolutionary state. Characterizing granulation is key for understanding stellar atmospheres and detecting planets. Aims. We aim to detect the signatures of stellar granulation, link spectroscopic and photometric signatures of convection for main-sequence stars, and test predictions from 3D hydrodynamic models. Methods. For the first time, we observed two bright stars ( T eff = 5833 and 6205 K) with high-precision observations taken simultaneously with CHEOPS and ESPRESSO. We analyzed the properties of the stellar granulation signal in each individual dataset. We compared them to Kepler observations and 3D hydrodynamic models. While isolating the granulation-induced changes by attenuating and filtering the p -mode oscillation signals, we studied the relationship between photometric and spectroscopic observables. Results. The signature of stellar granulation is detected and precisely characterized for the hotter F star in the CHEOPS and ESPRESSO observations. For the cooler G star, we obtain a clear detection in the CHEOPS dataset only. The TESS observations are blind to this stellar signal. Based on CHEOPS observations, we show that the inferred properties of stellar granulation are in agreement with both Kepler observations and hydrodynamic models. Comparing their periodograms, we observe a strong link between spectroscopic and photometric observables. Correlations of this stellar signal in the time domain (flux versus radial velocities, RV) and with specific spectroscopic observables (shape of the cross-correlation functions) are however difficult to isolate due to S/N dependent variations. Conclusions. In the context of the upcoming PLATO mission and the extreme precision RV surveys, a thorough understanding of the properties of the stellar granulation signal is needed. The CHEOPS and ESPRESSO observations pave the way for detailed analyses of this stellar process.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 646 ( 2021-2), p. A157-
    Abstract: Context. The detection of a super-Earth and three mini-Neptunes transiting the bright ( V = 9.2 mag) star HD 108236 (also known as TOI-1233) was recently reported on the basis of TESS and ground-based light curves. Aims. We perform a first characterisation of the HD 108236 planetary system through high-precision CHEOPS photometry and improve the transit ephemerides and system parameters. Methods. We characterise the host star through spectroscopic analysis and derive the radius with the infrared flux method. We constrain the stellar mass and age by combining the results obtained from two sets of stellar evolutionary tracks. We analyse the available TESS light curves and one CHEOPS transit light curve for each known planet in the system. Results. We find that HD 108236 is a Sun-like star with R ⋆ = 0.877 ± 0.008 R ⊙ , M ⋆ = 0.869 −0.048 +0.050 M ⊙ , and an age of 6.7 −5.1 +4.0 Gyr. We report the serendipitous detection of an additional planet, HD 108236 f, in one of the CHEOPS light curves. For this planet, the combined analysis of the TESS and CHEOPS light curves leads to a tentative orbital period of about 29.5 days. From the light curve analysis, we obtain radii of 1.615 ± 0.051, 2.071 ± 0.052, 2.539 −0.065 +0.062 , 3.083 ± 0.052, and 2.017 −0.057 +0.052 R ⊕ for planets HD 108236 b to HD 108236 f, respectively. These values are in agreement with previous TESS-based estimates, but with an improved precision of about a factor of two. We perform a stability analysis of the system, concluding that the planetary orbits most likely have eccentricities smaller than 0.1. We also employ a planetary atmospheric evolution framework to constrain the masses of the five planets, concluding that HD 108236 b and HD 108236 c should have an Earth-like density, while the outer planets should host a low mean molecular weight envelope. Conclusions. The detection of the fifth planet makes HD 108236 the third system brighter than V = 10 mag to host more than four transiting planets. The longer time span enables us to significantly improve the orbital ephemerides such that the uncertainty on the transit times will be of the order of minutes for the years to come. A comparison of the results obtained from the TESS and CHEOPS light curves indicates that for a V ~ 9 mag solar-like star and a transit signal of ~500 ppm, one CHEOPS transit light curve ensures the same level of photometric precision as eight TESS transits combined, although this conclusion depends on the length and position of the gaps in the light curve.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 674 ( 2023-6), p. A43-
    Abstract: Context. A large sample of long-period giant planets has been discovered thanks to long-term radial velocity surveys, but only a few dozen of these planets have a precise radius measurement. Transiting gas giants are crucial targets for the study of atmospheric composition across a wide range of equilibrium temperatures and, more importantly, for shedding light on the formation and evolution of planetary systems. Indeed, compared to hot Jupiters, the atmospheric properties and orbital parameters of cooler gas giants are unaltered by intense stellar irradiation and tidal effects. Aims. We aim to identify long-period planets in the Transiting Exoplanet Survey Satellite (TESS) data as single or duo-transit events. Our goal is to solve the orbital periods of TESS duo-transit candidates with the use of additional space-based photometric observations and to collect follow-up spectroscopic observations in order to confirm the planetary nature and measure the mass of the candidates. Methods. We use the CHaracterising ExOPlanet Satellite (CHEOPS) to observe the highest-probability period aliases in order to discard or confirm a transit event at a given period. Once a period is confirmed, we jointly model the TESS and CHEOPS light curves along with the radial velocity datasets to measure the orbital parameters of the system and obtain precise mass and radius measurements. Results. We report the discovery of a long-period transiting Neptune-mass planet orbiting the G7-type star TOI-5678. Our spectroscopic analysis shows that TOI-5678 is a star with a solar metallicity. The TESS light curve of TOI-5678 presents two transit events separated by almost two years. In addition, CHEOPS observed the target as part of its Guaranteed Time Observation program. After four non-detections corresponding to possible periods, CHEOPS detected a transit event matching a unique period alias. Follow-up radial velocity observations were carried out with the ground-based high-resolution spectrographs CORALIE and HARPS. Joint modeling reveals that TOI-5678 hosts a 47.73 day period planet, and we measure an orbital eccentricity consistent with zero at 2 σ . The planet TOI-5678 b has a mass of 20 ± 4 Earth masses ( M ⊕ ) and a radius of 4.91 ± 0.08 R ⊕ Using interior structure modeling, we find that TOI-5678 b is composed of a low-mass core surrounded by a large H/He layer with a mass of 3.2 ±1.7 −1.3 M ⊕ . Conclusions. TOI-5678 b is part of a growing sample of well-characterized transiting gas giants receiving moderate amounts of stellar insolation (11 S ⊕ ). Precise density measurement gives us insight into their interior composition, and the objects orbiting bright stars are suitable targets to study the atmospheric composition of cooler gas giants.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 668 ( 2022-12), p. A31-
    Abstract: Much remains to be understood about the nature of exoplanets smaller than Neptune, most of which have been discovered in compact multi-planet systems. With its inner ultra-short period planet b aligned with the star and two larger outer planets d-c on polar orbits, the multi-planet system HD 3167 features a peculiar architecture and offers the possibility to investigate both dynamical and atmospheric evolution processes. To this purpose we combined multiple datasets of transit photometry and radial velocimetry (RV) to revise the properties of the system and inform models of its planets. This effort was spearheaded by CHEOPS observations of HD 3167b, which appear inconsistent with a purely rocky composition despite its extreme irradiation. Overall the precision on the planetary orbital periods are improved by an order of magnitude, and the uncertainties on the densities of the transiting planets b and c are decreased by a factor of 3. Internal structure and atmospheric simulations draw a contrasting picture between HD 3167d, likely a rocky super-Earth that lost its atmosphere through photo-evaporation, and HD 3167c, a mini-Neptune that kept a substantial primordial gaseous envelope. We detect a fourth, more massive planet on a larger orbit, likely coplanar with HD 3167d-c. Dynamical simulations indeed show that the outer planetary system d-c-e was tilted, as a whole, early in the system history, when HD 3167b was still dominated by the star influence and maintained its aligned orbit. RV data and direct imaging rule out that the companion that could be responsible for the present-day architecture is still bound to the HD 3167 system. Similar global studies of multi-planet systems will tell how many share the peculiar properties of the HD 3167 system, which remains a target of choice for follow-up observations and simulations.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 675 ( 2023-7), p. A183-
    Abstract: Context . Giant planets are known to dominate the long-term stability of planetary systems due to their prevailing gravitational interactions, but they are also thought to play an important role in planet formation. Observational constraints improve our understanding of planetary formation processes such as the delivery of volatile-rich planetesimals from beyond the ice line into the inner planetary system. Additional constraints may come from studies of the atmosphere, but almost all such studies of the atmosphere investigate the detection of certain species, and abundances are not routinely quantitatively measured. Aims . Accurate measurements of planetary bulk parameters – that is, mass and density – provide constraints on the inner structure and chemical composition of transiting planets. This information provides insight into properties such as the amounts of volatile species, which in turn can be related to formation and evolution processes. Methods . The Transiting Exoplanet Survey Satellite (TESS) reported a planetary candidate around HD 190622 (TOI-1054), which was subsequently validated and found to merit further characterization with photometric and spectroscopic facilities. The KESPRINT collaboration used data from the High Accuracy Radial Velocity Planet Searcher (HARPS) to independently confirm the planetary candidate, securing its mass, and revealing the presence of an outer giant planet in the system. The CHEOPS consortium invested telescope time in the transiting target in order to reduce the uncertainty on the radius, improving the characterization of the planet. Results . We present the discovery and characterization of the planetary system around HD 190622 (TOI-1054). This system hosts one transiting planet, which is smaller than Neptune (3.087 -0.053 +0.058 R Earth , 7.7 ± 1.0 M Earth ) but has a similar bulk density (1.43 ± 0.21 g cm −3 ) and an orbital period of 16 days; and a giant planet, not known to be transiting, with a minimum mass of 227.0 ± 6.7 M Earth in an orbit with a period of 315 days. Conclusions . Our measurements constrain the structure and composition of the transiting planet. HD 190622b has singular properties among the known population of transiting planets, which we discuss in detail. Among the sub-Neptune-sized planets known today, this planet stands out because of its large gas content.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 671 ( 2023-03), p. L8-
    Abstract: Context. TOI-1055 is a Sun-like star known to host a transiting Neptune-sized planet on a 17.5-day orbit (TOI-1055 b). Radial velocity (RV) analyses carried out by two independent groups using nearly the same set of HARPS spectra have provided measurements of planetary masses that differ by ∼2 σ . Aims. Our aim in this work is to solve the inconsistency in the published planetary masses by significantly extending the set of HARPS RV measurements and employing a new analysis tool that is able to account and correct for stellar activity. Our further aim was to improve the precision on measurements of the planetary radius by observing two transits of the planet with the CHEOPS space telescope. Methods. We fit a skew normal function to each cross correlation function extracted from the HARPS spectra to obtain RV measurements and hyperparameters to be used for the detrending. We evaluated the correlation changes of the hyperparameters along the RV time series using the breakpoint technique. We performed a joint photometric and RV analysis using a Markov chain Monte Carlo scheme to simultaneously detrend the light curves and the RV time series. Results. We firmly detected the Keplerian signal of TOI-1055 b, deriving a planetary mass of M b  = 20.4 −2.5 +2.6   M ⊕ (∼12%). This value is in agreement with one of the two estimates in the literature, but it is significantly more precise. Thanks to the TESS transit light curves combined with exquisite CHEOPS photometry, we also derived a planetary radius of R b  = 3.490 −0.064 +0.070   R ⊕ (∼1.9%). Our mass and radius measurements imply a mean density of ρ b  = 2.65 −0.35 +0.37 g cm −3 (∼14%). We further inferred the planetary structure and found that TOI-1055 b is very likely to host a substantial gas envelope with a mass of 0.41 −0.20 +0.34   M ⊕ and a thickness of 1.05 −0.29 +0.30   R ⊕ . Conclusions. Our RV extraction combined with the breakpoint technique has played a key role in the optimal removal of stellar activity from the HARPS time series, enabling us to solve the tension in the planetary mass values published so far for TOI-1055 b.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 664 ( 2022-8), p. A156-
    Abstract: Context. TOI-2076 is a transiting three-planet system of sub-Neptunes orbiting a bright ( G = 8.9 mag), young (340 ± 80 Myr) K-type star. Although a validated planetary system, the orbits of the two outer planets were unconstrained as only two non-consecutive transits were seen in TESS photometry. This left 11 and 7 possible period aliases for each. Aims. To reveal the true orbits of these two long-period planets, precise photometry targeted on the highest-probability period aliases is required. Long-term monitoring of transits in multi-planet systems can also help constrain planetary masses through TTV measurements. Methods. We used the MonoTools package to determine which aliases to follow, and then performed space-based and ground-based photometric follow-up of TOI-2076 c and d with CHEOPS, SAINT-EX, and LCO telescopes. Results. CHEOPS observations revealed a clear detection for TOI-2076 c at $P = 21.02538_{ - 0.00074}^{ + 0.00084}$ d, and allowed us to rule out three of the most likely period aliases for TOI-2076 d. Ground-based photometry further enabled us to rule out remaining aliases and confirm the P = 35.12537 ± 0.00067 d alias. These observations also improved the radius precision of all three sub-Neptunes to 2.518 ± 0.036, 3.497 ± 0.043, and 3.232 ± 0.063 R ⊕ . Our observations also revealed a clear anti-correlated TTV signal between planets b and c likely caused by their proximity to the 2:1 resonance, while planets c and d appear close to a 5:3 period commensurability, although model degeneracy meant we were unable to retrieve robust TTV masses. Their inflated radii, likely due to extended H-He atmospheres, combined with low insolation makes all three planets excellent candidates for future comparative transmission spectroscopy with JWST.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Experimental Astronomy Vol. 51, No. 1 ( 2021-02), p. 109-151
    In: Experimental Astronomy, Springer Science and Business Media LLC, Vol. 51, No. 1 ( 2021-02), p. 109-151
    Abstract: The CHaracterising ExOPlanet Satellite (CHEOPS) was selected on October 19, 2012, as the first small mission (S-mission) in the ESA Science Programme and successfully launched on December 18, 2019, as a secondary passenger on a Soyuz-Fregat rocket from Kourou, French Guiana. CHEOPS is a partnership between ESA and Switzerland with important contributions by ten additional ESA Member States. CHEOPS is the first mission dedicated to search for transits of exoplanets using ultrahigh precision photometry on bright stars already known to host planets. As a follow-up mission, CHEOPS is mainly dedicated to improving, whenever possible, existing radii measurements or provide first accurate measurements for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. The expected photometric precision will also allow CHEOPS to go beyond measuring only transits and to follow phase curves or to search for exo-moons, for example. Finally, by unveiling transiting exoplanets with high potential for in-depth characterisation, CHEOPS will also provide prime targets for future instruments suited to the spectroscopic characterisation of exoplanetary atmospheres. To reach its science objectives, requirements on the photometric precision and stability have been derived for stars with magnitudes ranging from 6 to 12 in the V band. In particular, CHEOPS shall be able to detect Earth-size planets transiting G5 dwarf stars (stellar radius of 0.9 R ⊙ ) in the magnitude range 6 ≤ V ≤ 9 by achieving a photometric precision of 20 ppm in 6 hours of integration time. In the case of K-type stars (stellar radius of 0.7 R ⊙ ) of magnitude in the range 9 ≤ V ≤ 12, CHEOPS shall be able to detect transiting Neptune-size planets achieving a photometric precision of 85 ppm in 3 hours of integration time. This precision has to be maintained over continuous periods of observation for up to 48 hours. This precision and stability will be achieved by using a single, frame-transfer, back-illuminated CCD detector at the focal plane assembly of a 33.5 cm diameter, on-axis Ritchey-Chrétien telescope. The nearly 275 kg spacecraft is nadir-locked, with a pointing accuracy of about 1 arcsec rms, and will allow for at least 1 Gbit/day downlink. The sun-synchronous dusk-dawn orbit at 700 km altitude enables having the Sun permanently on the backside of the spacecraft thus minimising Earth stray light. A mission duration of 3.5 years in orbit is foreseen to enable the execution of the science programme. During this period, 20% of the observing time is available to the wider community through yearly ESA call for proposals, as well as through discretionary time approved by ESA’s Director of Science. At the time of this writing, CHEOPS commissioning has been completed and CHEOPS has been shown to fulfill all its requirements. The mission has now started the execution of its science programme.
    Type of Medium: Online Resource
    ISSN: 0922-6435 , 1572-9508
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2012330-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 643 ( 2020-11), p. A94-
    Abstract: The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189 b, a M P ≈ 2 M J planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of 3435 ± 27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189 b to 1.619 ± 0.021 R J . We further measured the projected orbital obliquity to be λ = 86.4 −4.4 +2.9° , a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of Ψ = 85.4 ± 4.3°. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining the four visits.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages