feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
  • Tian, Fuyou  (5)
  • 2020-2024  (5)
Type of Medium
Publisher
  • MDPI AG  (5)
Language
Years
  • 2020-2024  (5)
Year
  • 1
    In: Remote Sensing, MDPI AG, Vol. 12, No. 23 ( 2020-11-25), p. 3860-
    Abstract: Accurate precipitation data at high spatiotemporal resolution are critical for land and water management at the basin scale. We proposed a downscaling framework for Tropical Rainfall Measuring Mission (TRMM) precipitation products through integrating Google Earth Engine (GEE) and Google Colaboratory (Colab). Three machine learning methods, including Gradient Boosting Regressor (GBR), Support Vector Regressor (SVR), and Artificial Neural Network (ANN) were compared in the framework. Three vegetation indices (Normalized Difference Vegetation Index, NDVI; Enhanced Vegetation Index, EVI; Leaf Area Index, LAI), topography, and geolocation are selected as geospatial predictors to perform the downscaling. This framework can automatically optimize the models’ parameters, estimate features’ importance, and downscale the TRMM product to 1 km. The spatial downscaling of TRMM from 25 km to 1 km was achieved by using the relationships between annual precipitations and annually-averaged vegetation index. The monthly precipitation maps derived from the annual downscaled precipitation by disaggregation. According to validation in the Great Mekong upstream region, the ANN yielded the best performance when simulating the annual TRMM precipitation. The most sensitive vegetation index for downscaling TRMM was LAI, followed by EVI. Compared with existing downscaling methods, the proposed framework for downscaling TRMM can be performed online for any given region using a wide range of machine learning tools and environmental variables to generate a precipitation product with high spatiotemporal resolution.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Sensors Vol. 21, No. 4 ( 2021-02-07), p. 1165-
    In: Sensors, MDPI AG, Vol. 21, No. 4 ( 2021-02-07), p. 1165-
    Abstract: In situ ground truth data are an important requirement for producing accurate cropland type map, and this is precisely what is lacking at vast scales. Although volunteered geographic information (VGI) has been proven as a possible solution for in situ data acquisition, processing and extracting valuable information from millions of pictures remains challenging. This paper targets the detection of specific crop types from crowdsourced road view photos. A first large, public, multiclass road view crop photo dataset named iCrop was established for the development of crop type detection with deep learning. Five state-of-the-art deep convolutional neural networks including InceptionV4, DenseNet121, ResNet50, MobileNetV2, and ShuffleNetV2 were employed to compare the baseline performance. ResNet50 outperformed the others according to the overall accuracy (87.9%), and ShuffleNetV2 outperformed the others according to the efficiency (13 FPS). The decision fusion schemes major voting was used to further improve crop identification accuracy. The results clearly demonstrate the superior accuracy of the proposed decision fusion over the other non-fusion-based methods in crop type detection of imbalanced road view photos dataset. The voting method achieved higher mean accuracy (90.6–91.1%) and can be leveraged to classify crop type in crowdsourced road view photos.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 14, No. 8 ( 2022-04-11), p. 1830-
    Abstract: Accurate and early crop-type maps are essential for agricultural policy development and food production assessment at regional and national levels. This study aims to produce a crop-type map with acceptable accuracy and spatial resolution in northern Mongolia by optimizing the combination of Sentinel-1 (S1) and Sentinel-2 (S2) images with the Google Earth Engine (GEE) environment. A total of three satellite data combination scenarios are set, including S1 alone, S2 alone, and the combination of S1 and S2. In order to avoid the impact of data gaps caused by clouds on crop classification, this study reconstructed the time series of S1 and S2 with a 10-day interval using the median composite method, linear moving interpolation, and Savitzky–Golay (SG) filter. Our results indicated that crop-type classification accuracy increased with the increase in data length to all three data combination scenarios. S2 alone has higher accuracy than S1 alone and the combination of S1 and S2. The crop-type map with the highest accuracy was generated using S2 data from 150 days of the year (DOY) (11 May) to 260 DOY (18 September). The OA and kappa were 0.93 and 0.78, respectively, and the F1-score for spring wheat and rapeseed were 0.96 and 0.80, respectively. The classification accuracy of the crop increased rapidly from 210 DOY (end of July) to 260 DOY (August to mid-September), and then it remained stable after 260 DOY. Based on our analysis, we filled the gap of the crop-type map with 10 m spatial resolution in northern Mongolia, revealing the best satellite combination and the best period for crop-type classification, which can benefit the achievement of sustainable development goals 2 (SDGs2).
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 14, No. 5 ( 2022-03-01), p. 1208-
    Abstract: Crop type classification is critical for crop production estimation and optimal water allocation. Crop type data are challenging to generate if crop reference data are lacking, especially for target years with reference data missed in collection. Is it possible to transfer a trained crop type classification model to retrace the historical spatial distribution of crop types? Taking the Hetao Irrigation District (HID) in China as the study area, this study first designed a 10 m crop type classification framework based on the Google Earth Engine (GEE) for crop type mapping in the current season. Then, its interannual transferability to accurately retrace historical crop distributions was tested. The framework used Sentinel-1/2 data as the satellite data source, combined percentile, and monthly composite approaches to generate classification metrics and employed a random forest classifier with 300 trees for crop classification. Based on the proposed framework, this study first developed a 10 m crop type map of the HID for 2020 with an overall accuracy (OA) of 0.89 and then obtained a 10 m crop type map of the HID for 2019 with an OA of 0.92 by transferring the trained model for 2020 without crop reference samples. The results indicated that the designed framework could effectively identify HID crop types and have good transferability to obtain historical crop type data with acceptable accuracy. Our results found that SWIR1, Green, and Red Edge2 were the top three reflectance bands for crop classification. The land surface water index (LSWI), normalized difference water index (NDWI), and enhanced vegetation index (EVI) were the top three vegetation indices for crop classification. April to August was the most suitable time window for crop type classification in the HID. Sentinel-1 information played a positive role in the interannual transfer of the trained model, increasing the OA from 90.73% with Sentinel 2 alone to 91.58% with Sentinel-1 and Sentinel-2 together.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Remote Sensing, MDPI AG, Vol. 12, No. 13 ( 2020-06-30), p. 2096-
    Abstract: Having updated knowledge of cropland extent is essential for crop monitoring and food security early warning. Previous research has proposed different methods and adopted various datasets for mapping cropland areas at regional to global scales. However, most approaches did not consider the characteristics of farming systems and apply the same classification method in different agroecological zones (AEZs). Furthermore, the acquisition of in situ samples for classification training remains challenging. To address these knowledge gaps and challenges, this study applied a zone-specific classification by comparing four classifiers (random forest, the support vector machine (SVM), the classification and regression tree (CART) and minimum distance) for cropland mapping over four different AEZs in the Zambezi River basin (ZRB). Landsat-8 and Sentinel-2 data and derived indices were used and synthesized to generate thirty-five layers for classification on the Google Earth Engine platform. Training samples were derived from three existing landcover datasets to minimize the cost of sample acquisitions over the large area. The final cropland map was generated at a 10 m resolution. The performance of the four classifiers and the viability of training samples were analysed. All classifiers presented higher accuracy in cool AEZs than in warm AEZs, which may be attributed to field size and lower confusion between cropland and grassland classes. This indicates that agricultural landscape may impact classification results regardless of the classifiers. Random forest was found to be the most stable and accurate classifier across different agricultural systems, with an overall accuracy of 84% and a kappa coefficient of 0.67. Samples extracted over the full agreement areas among existing datasets reduced uncertainty and provided reliable calibration sets as a replacement of costly in situ measurements. The methodology proposed by this study can be used to generate periodical high-resolution cropland maps in ZRB, which is helpful for the analysis of cropland extension and abandonment as well as intensity changes in response to the escalating population and food insecurity.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages