Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Genes, MDPI AG, Vol. 12, No. 11 ( 2021-10-23), p. 1682-
    Abstract: All biological processes associated with high sports performance, including energy metabolism, are influenced by genetics. DNA sequence variations in such genes, single nucleotide variants (SNVs), could confer genetic advantages that can be exploited to achieve optimal athletic performance. Ignorance of these features can create genetic “barriers” that prevent professional athletes from pursuing a career in sports. Predictive Genomic DNA Profiling reveals single nucleotide variations (SNV) that may be associated with better suitability for endurance, strength and speed sports. (1) Background: To conduct a research on candidate genes associated with regulation of skeletal muscle energy metabolism among athletes. (2) Methods: We have searched for articles in SCOPUS, Web of Science, Google Scholar, Clinical keys, PubMed, e-LIBRARY databases for the period of 2010–2020 using keywords and keywords combinations; (4) Conclusions: Identification of genetic markers associated with the regulation of energy metabolism in skeletal muscles can help sports physicians and coaches develop personalized strategies for selecting children, teenagers and young adults for endurance, strength and speed sports (such as jogging, middle or long distance runs). However, the multifactorial aspect of sport performances, including impact of genetics, epigenetics, environment (training and etc.), is important for personalized strategies for selecting of athletes. This approach could improve sports performance and reduce the risk of sports injuries to the musculoskeletal system.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527218-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Biomolecules, MDPI AG, Vol. 11, No. 9 ( 2021-08-26), p. 1279-
    Abstract: (1) Background: The purpose of this review is to analyze domestic and foreign studies on the role of collagen-encoding genes polymorphism in the development of intervertebral discs (IVDs) degeneration in humans. (2) Methods: We have carried out a search for full-text articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier and Google Scholar databases. The search was carried out using keywords and their combinations. The search depth was 5 years (2016–2021). In addition, this review includes articles of historical interest. Despite an extensive search, it is possible that we might have missed some studies published in recent years. (3) Results: According to the data of genome-wide and associative genetic studies, the following candidate genes that play a role in the biology of IVDs and the genetic basis of the processes of collagen degeneration of the annulus fibrosus and nucleus pulposus of IVDs in humans are of the greatest interest to researchers: COL1A1, COL2A1, COL9A2, COL9A3, COL11A1 and COL11A2. In addition, the role of genes COL1A2, COL9A1 and others is being actively studied. (4) Conclusions: In our review, we summarized and systematized the available information on the role of genetic factors in IVD collagen fibers turnover and also focused on the functions of different types of collagen present in the IVD. Understanding the etiology of impaired collagen formation can allow doctors to prescribe pathogenetically-based treatment, achieving the most effective results.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2701262-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecules, MDPI AG, Vol. 26, No. 9 ( 2021-04-22), p. 2431-
    Abstract: Chronic pain syndromes are an important medical problem generated by various molecular, genetic, and pathophysiologic mechanisms. Back pain, neuropathic pain, and posttraumatic pain are the most important pathological processes associated with chronic pain in adults. Standard approaches to the treatment of them do not solve the problem of pain chronicity. This is the reason for the search for new personalized strategies for the prevention and treatment of chronic pain. The nitric oxide (NO) system can play one of the key roles in the development of peripheral pain and its chronicity. The purpose of the study is to review publications devoted to changes in the NO system in patients with peripheral chronical pain syndromes. We have carried out a search for the articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier, and Google Scholar databases. The search was carried out using keywords and their combinations. The role of NO and NO synthases (NOS) isoforms in peripheral pain development and chronicity was demonstrated primarily from animal models to humans. The most studied is the neuronal NOS (nNOS). The role of inducible NOS (iNOS) and endothelial NOS (eNOS) is still under investigation. Associative genetic studies have shown that single nucleotide variants (SNVs) of NOS1, NOS2, and NOS3 genes encoding nNOS, iNOS, and eNOS may be associated with acute and chronic peripheral pain. Prospects for the use of NOS inhibitors to modulate the effect of drugs used to treat peripheral pain syndrome are discussed. Associative genetic studies of SNVs NOS1, NOS2, and NOS3 genes are important for understanding genetic predictors of peripheral pain chronicity and development of new personalized pharmacotherapy strategies.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages