Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Human Genetics, Springer Science and Business Media LLC, Vol. 112, No. 1 ( 2003-1-1), p. 42-49
    Type of Medium: Online Resource
    ISSN: 0340-6717
    RVK:
    Language: Unknown
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2003
    detail.hit.zdb_id: 1459188-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 91, No. 8 ( 1998-04-15), p. 2810-2817
    Abstract: A patient with a history of recurrent late fetal loss associated with multiple placental infarcts and cerebrovascular ischemia at the age of 36, followed a year later by a myocardial infarction, was referred for further investigation. Coronary angiography was normal. Antinuclear factor, lupus anticoagulant, anticardiolipin antibodies, and other thrombophilia parameters were negative, but there was moderate hyperthyroidism with positive thyroid peroxidase antibodies. Platelet numbers and von Willebrand factor (vWF) were normal. Her platelets showed spontaneous aggregation that disappeared with aspirin intake. However, aggregation still was induced by low levels of ristocetin (0.3 to 0.5 mg/mL). The low-dose ristocetin aggregation in patient platelet-rich plasma (PRP) was completely blocked by neutralizing antiglycoprotein Ib (GPIb) and anti-vWF antibodies. The monoclonal anti-FcγRII receptor antibody IV.3 inhibited partly, which suggests that PRP aggregation by low-dose ristocetin was elicited by vWF-immunoglobulin (Ig) complexes. Upon addition to washed human platelets, with vWF (10 μg/mL), purified patient Igs dose-dependently enhanced ristocetin (0.15 mg/mL)-induced aggregation between 0 and 500 μg/mL, an effect that disappeared again above 1 mg/mL. Aggregation was dependent on the vWF concentration and was blocked by IV.3 or neutralizing anti-GPIb or anti-vWF antibodies. The spontaneous aggregation of normal platelets resuspended in patient plasma could be inhibited totally by IV.3 and partially by neutralizing anti-GPIb or anti-vWF antibodies. Perfusion with normal anticoagulated blood, enriched with 10% of control or patient plasma, over surfaces coated with vWF showed increased platelet adhesion and activation in the presence of patient antibodies. Treatment of the patient with the antithyroid drug thiamazol and temporary corticosteroids, aspirin, and ticlopidine did not correct the platelet hypersensitivity to ristocetin. These observations suggest that some autoantibodies to vWF may both enhance vWF binding to platelets and cause platelet activation through binding to the FcγRII receptor, and thereby may be responsible for a new form of antibody-mediated thrombosis.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 1998
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 98, No. 1 ( 2001-07-01), p. 85-92
    Abstract: A new mutation is described in the X-linked geneGATA1, resulting in macrothrombocytopenia and mild dyserythropoietic features but no marked anemia in a 4-generation family. The molecular basis for the observed phenotype is a substitution of glycine for aspartate in the strictly conserved codon 218 (D218G) of the amino-terminal zinc finger loop of the transcription factor GATA1. Zinc finger interaction studies demonstrated that this mutation results in a weak loss of affinity of GATA1 for its essential cofactor FOG1, whereas direct D218G-GATA1 binding to DNA was normal. The phenotypic effects of this mutation in the patients' platelets have been studied. Semiquantitative RNA analysis, normalized for β-actin messenger RNA, showed extremely low transcription of the GATA1 target genes GPIbβ and GPIXbut also a significantly lower expression of the nondirectly GATA1-regulated Gsα gene, suggestive of incomplete megakaryocyte maturation. In contrast, GPIIIa expression was close to normal in agreement with its early appearance during megakaryocyte differentiation. Flow cytometric analysis of patient platelets confirmed the existence of a platelet population with abnormal size distribution and reduced GPIb complex levels but with normal GPIIIa expression. It also showed the presence of very immature platelets lacking almost all membrane glycoproteins studied (GPIbα, GPIbβ, GPIIIa, GPIX, and GPV). Patients' platelets showed weak ristocetin-induced agglutination, compatible with the disturbed GPIb complex. Accordingly, electron microscopy of the patients' platelets revealed giant platelets with cytoplasmic clusters consisting of smooth endoplasmic reticulum and abnormal membrane complexes. In conclusion,GATA1 mutations can lead to isolated X-linked macrothrombocytopenia without anemia.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2001
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 113, No. 6 ( 2004-3-15), p. 905-912
    Type of Medium: Online Resource
    ISSN: 0021-9738
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2004
    detail.hit.zdb_id: 2018375-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Elsevier BV ; 2000
    In:  Journal of Biological Chemistry Vol. 275, No. 30 ( 2000-07), p. 22611-22614
    In: Journal of Biological Chemistry, Elsevier BV, Vol. 275, No. 30 ( 2000-07), p. 22611-22614
    Type of Medium: Online Resource
    ISSN: 0021-9258
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2000
    detail.hit.zdb_id: 2141744-1
    detail.hit.zdb_id: 1474604-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 106, No. 7 ( 2005-10-01), p. 2356-2362
    Abstract: The discoid form of platelets is maintained by a marginal band of tightly coiled microtubules. β1-tubulin is the major isoform within platelet and megakaryocyte microtubules. In 24.2% of 33 unrelated inherited macrothrombocytopenia patients and in 10.6% of 272 subjects of a healthy population a P for Q substitution in β1-tubulin was found in the highly conserved residue 43. Heterozygous carriers of the Q43P variant showed a reduced platelet protein β1-tubulin expression. Transfection of green fluorescent protein (GFP)-tagged Q43P β1-tubulin in megakaryocytic MEG01 cells resulted in a disturbed tubulin organization. Electron microscopy revealed enlarged spherocytic platelets with a disturbed marginal band and organelle-free zones. In addition, platelets with the Q43P β1-tubulin variant had reduced adenosine triphosphate (ATP) secretion, thrombin receptor activating peptide (TRAP)-induced aggregation and collagen adhesion. The prevalence of the Q43P β1-tubulin variant was also 2 times higher (odds ratio, [OR] = 2.1;95% confidence interval [CI] , 1.22-3.59) among control subjects than among patients with cardiovascular disease (10.4% versus 5.2%, P & lt; .001). By analyzing this protective factor in men and women separately, this association was only found in men. This study thus presents the functional consequences of the platelet Q43P β1-tubulin substitution that is frequent in the healthy population and may protect men against arterial thrombosis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 111, No. 4 ( 2008-02-15), p. 1885-1893
    Abstract: Megakaryocytes and platelets express the Gs-coupled VPAC1 receptor, for which the pituitary adenylyl cyclase–activating peptide (PACAP) and the vasointestinal peptide (VIP) are agonists. We here demonstrate a regulatory role for VPAC1 signaling during megakaryopoiesis. A total of 2 patients with trisomy 18p with PACAP overexpression and transgenic mice overexpressing PACAP in megakaryocytes have thrombopathy, a mild thrombocytopenia, and a reduced number of mature megakaryocytes in their bone marrow. In vitro differentiation of hematopoietic stem cells from the patient and transgenic mice shows a reduced number of megakaryocyte colonies compared with controls. The addition of PACAP, VIP, or the adenylyl cyclase activator forskolin to CD34+ cells inhibits megakaryocyte differentiation. In contrast, neutralizing monoclonal anti-PACAP (PP1A4) or anti-VPAC1 (23A11) antibodies inhibit cAMP formation and stimulate megakaryopoiesis in a thrombopoietin-independent manner. Moreover, wild-type mice obtain an increased platelet count after subcutaneous injection of PP1A4 or 23A11. These antibodies also elevate platelet numbers in animal models of myelosuppressive therapy and in GATA1-deficient mice with congenital thrombocytopenia. Furthermore, 23A11 stimulates the in vitro megakaryocyte differentiation of both normal and GATA1-deficient human CD34+ cells. Together, our data strongly suggest that VPAC1 signaling tempers normal megakaryopoiesis, and that inhibition of this pathway stimulates megakaryocyte differentiation, enhancing platelet recovery after myelosuppressive therapy and in GATA1 deficiency.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2004
    In:  Blood Vol. 104, No. 11 ( 2004-11-16), p. 735-735
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 735-735
    Abstract: Identification of the regulatory pathways that direct megakaryopoiesis and platelet production is essential for the development of novel strategies to treat life threatening bleeding complications in bone marrow suppressed patients. We demonstrated that megakaryocytes and platelets express the Gs-coupled VPAC1 receptor, for which both PACAP and VIP are specific agonists. We have further identified a bleeding tendency and found three copies of the PACAP gene in two related patients with severe mental retardation, responsible for elevated PACAP plasma levels and associated increased platelet cAMP concentrations, resulting in strongly reduced platelet aggregation (JCI, 2004, 113, 905). In this study, we have further demonstrated a fundamental role for the VPAC1 signalling pathway during megakaryocyte maturation and platelet formation. Patients with PACAP overexpression have mild thrombocytopenia, a normal platelet survival and relatively small platelets with an MPV of 8.2 fL (normal MPV 9-13 fL). FACS analysis of the patients’ platelets showed reduced expression of GPIX and GPIIIa. Electron microscopy of bone marrow of patients and of mice, specifically overexpressing PACAP in megakaryocytes revealed the presence of early megakaryocyte progenitors but almost not of mature megakaryocytes. Immature megakaryoblasts seemed to have reduced levels of rough endoplasmic reticulum cisternae and free ribosomes. To further study the modulating role of VPAC1 in thrombopoiesis, control mice were therefore subcutaneously injected with neutralizing polyclonal or monoclonal anti-PACAP, anti-VIP or anti-VPAC1 antibodies. Injection of these antibodies in all cases led to increased platelet counts, compared to control antibodies (monoclonal anti-PACAP antibody: 1194 ± 237 x 109 plt/L; control antibody: 722 ± 178 x 109 plt/L; p=0.01, unpaired t-test at day 7 after injection). This strategy was also capable of reducing the drop in platelet count in busulfan treated mice (polyclonal anti-PACAP antibody: 561 ± 121 x 109 plt/L; control antibody: 349 ± 65 x 109 plt/L; p=0.033, unpaired t-test at day 29 or day 18 after respectively antibody and busulfan injection). In addition, bone marrow examination of mice injected with monoclonal anti-PACAP or anti-VPAC1 antibodies revealed an increase in megakaryocyte numbers and showed a marked expansion and mobilization of megakaryocyte progenitor cells. Mice injected with a monoclonal anti-VPAC1 antibody showed an increase of about 50% in bone marrow CFU-MK. In conclusion, we provide evidence that the VPAC1 pathway modulates normal megakaryopoiesis. Further studies are needed to evaluate whether this pathway can be safely manipulated in man in the treatment of thrombocytopenia.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Georg Thieme Verlag KG ; 2001
    In:  Thrombosis and Haemostasis Vol. 86, No. 11 ( 2001), p. 1264-1271
    In: Thrombosis and Haemostasis, Georg Thieme Verlag KG, Vol. 86, No. 11 ( 2001), p. 1264-1271
    Abstract: ATP is a potent agonist of the P2X1 ion channel, mediating a rapid, quickly desensitized influx of Ca2+. In hirudinized PRP, containing apyrase, the two stable selective P2X1 agonists, α,β-methylene ATP, and L-β, γ-methylene ATP induced extracellular Ca2+-dependent fast and reversible platelet shape change, leading to desensitization of the P2X1 ion channel. Preincubation with HPLC-purified ADP potently antagonized the subsequent α, β-methylene ATP- and L-β, γ-methylene ATP-evoked platelet shape change. Accordingly, upon heterologous expression of P2X1 in Xenopus oocytes, HPLC-purified ADP acted as an antagonist of the ATP-induced current, but was inactive itself. Since ATP and ADP are co-released from dense granules during platelet activation, we investigated whether the P2X1 ion channel is involved in the response of platelets to collagen. We found that platelet shape change and aggregation induced by low concentrations of collagen were strongly inhibited after selective desensitization of P2X1 with its agonists or by pretreating the platelets with a low concentration of ADP (0.5 μM), that antagonizes the P2X1 channel without desensitizing the P2Y1 receptor. Our data suggest that, during collagen-initiated platelet activation, the early secretion of ATP results in the activation of the P2X1 ion channel, which plays a role as a positive regulator of further platelet responses.
    Type of Medium: Online Resource
    ISSN: 0340-6245 , 2567-689X
    Language: English
    Publisher: Georg Thieme Verlag KG
    Publication Date: 2001
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 101, No. 4 ( 2003-02-15), p. 1375-1383
    Abstract: Platelet adhesion to damaged vessel wall and shear-induced platelet aggregation necessitate binding of the von Willebrand factor (VWF) A1 domain to platelet GPIbα. Blocking this interaction represents a promising approach to the treatment of arterial thrombosis. Comparison of amino acid sequences of the VWF A1 domain in several species, expressing VWF recognized by the blocking monoclonal antibody AJvW-2, suggested 9 residues (His563, Ile566, Asp570, Ala581, Val584, Ala587, Arg616, Ala618, and Met622) to contribute to the epitope for AJvW-2 or to be part of the GPIbα-binding site. Glutathione-S-transferase (GST)–human VWF A1 fusion proteins, in which these amino acids were mutated to their murine counterparts, were tested for their capacity to bind AJvW-2 or heparin, to interfere with botrocetin- or ristocetin-mediated VWF binding to GPIb, or to induce flow-dependent platelet tethering in a perfusion chamber. Thus, mutations His563Arg, Ile566Leu, Asp570Ala, and Ala587Thr, clustered on the outer surface of the A1 domain, dramatically impaired binding of AJvW-2 to A1. The His563Arg, Ile566Leu, and Asp570Ala mutations also impaired the binding of heparin, which competes with AJvW-2 for binding to A1. Perfusion studies revealed that His563, Ile566, Asp570, Arg616, and Ala618 take part in GPIbα binding, their mutation-impairing platelet recruitment. In agreement with the surface distribution of VWF type 2M mutations, this study demonstrates overlapping of the epitope for AJvW-2 and the GPIbα-binding site, located around the front pocket of the A1 domain and defined by strands β3, β4, and helix α3, and it provides a mechanistic basis for VWF neutralization by this antibody.
    Type of Medium: Online Resource
    ISSN: 1528-0020 , 0006-4971
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2003
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages