Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 48, No. 6 ( 2018-06), p. 1409-1431
    Abstract: The evidence for, baroclinic energetics of, and geographic distribution of parametric subharmonic instability (PSI) arising from both diurnal and semidiurnal tides in a global ocean general circulation model is investigated using 1/12.5° and 1/25° simulations that are forced by both atmospheric analysis fields and the astronomical tidal potential. The paper examines whether PSI occurs in the model, and whether it accounts for a significant fraction of the tidal baroclinic energy loss. Using energy transfer calculations and bispectral analyses, evidence is found for PSI around the critical latitudes of the tides. The intensity of both diurnal and semidiurnal PSI in the simulations is greatest in the upper ocean, consistent with previous results from idealized simulations, and quickly drops off about 5° from the critical latitudes. The sign of energy transfer depends on location; the transfer is positive (from the tides to subharmonic waves) in some locations and negative in others. The net globally integrated energy transfer is positive in all simulations and is 0.5%–10% of the amount of energy required to close the baroclinic energy budget in the model. The net amount of energy transfer is about an order of magnitude larger in the 1/25° semidiurnal simulation than the 1/12.5° one, implying the dependence of the rate of energy transfer on model resolution.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Climate Vol. 31, No. 5 ( 2018-03), p. 1789-1810
    In: Journal of Climate, American Meteorological Society, Vol. 31, No. 5 ( 2018-03), p. 1789-1810
    Abstract: Low-frequency variability at the ocean surface can be excited both by atmospheric forcing, such as in exchanges of heat and momentum, and by the intrinsic nonlinear transfer of energy between mesoscale ocean eddies. Recent studies have shown that nonlinear eddy interactions can excite an energy transfer from high to low frequencies analogous to the transfer of energy from high to low wavenumbers (small to large spatial scales) in quasi-two-dimensional turbulence. As the spatial inverse cascade is driven by oceanic eddies, the process of energy exchange across frequencies may be sensitive to ocean model resolution. Here a cross-spectrum diagnostic is applied to the oceanic component in a hierarchy of fully coupled ocean–atmosphere models to address the transfer of ocean surface kinetic energy between high and low frequencies. The cross-spectral diagnostic allows for a comparison of the relative contributions of coupled atmospheric forcing through wind stress and the intrinsic advection to low-frequency ocean surface kinetic energy. Diagnostics of energy flux and transfer within the frequency domain are compared between three coupled models with ocean model horizontal resolutions of 1°, 1/4°, and 1/10° to address the importance of resolving eddies in the driving of energy to low frequencies in coupled models.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 46 ( 2018-11-13), p. 11700-11705
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 46 ( 2018-11-13), p. 11700-11705
    Abstract: Oceanic uptake of anthropogenic CO 2 leads to decreased pH, carbonate ion concentration, and saturation state with respect to CaCO 3 minerals, causing increased dissolution of these minerals at the deep seafloor. This additional dissolution will figure prominently in the neutralization of man-made CO 2 . However, there has been no concerted assessment of the current extent of anthropogenic CaCO 3 dissolution at the deep seafloor. Here, recent databases of bottom-water chemistry, benthic currents, and CaCO 3 content of deep-sea sediments are combined with a rate model to derive the global distribution of benthic calcite dissolution rates and obtain primary confirmation of an anthropogenic component. By comparing preindustrial with present-day rates, we determine that significant anthropogenic dissolution now occurs in the western North Atlantic, amounting to 40–100% of the total seafloor dissolution at its most intense locations. At these locations, the calcite compensation depth has risen ∼300 m. Increased benthic dissolution was also revealed at various hot spots in the southern extent of the Atlantic, Indian, and Pacific Oceans. Our findings place constraints on future predictions of ocean acidification, are consequential to the fate of benthic calcifiers, and indicate that a by-product of human activities is currently altering the geological record of the deep sea.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Mary Ann Liebert Inc ; 2018
    In:  Sustainability: The Journal of Record Vol. 11, No. 1 ( 2018-02), p. 16-23
    In: Sustainability: The Journal of Record, Mary Ann Liebert Inc, Vol. 11, No. 1 ( 2018-02), p. 16-23
    Type of Medium: Online Resource
    ISSN: 1937-0695 , 1937-0709
    Language: English
    Publisher: Mary Ann Liebert Inc
    Publication Date: 2018
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2018
    In:  Journal of Physical Oceanography Vol. 48, No. 6 ( 2018-06), p. 1385-1408
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 48, No. 6 ( 2018-06), p. 1385-1408
    Abstract: A seasonally forced 1/12° global ocean/sea ice simulation is used to characterize the spatiotemporal inverse cascade of kinetic energy (KE). Nonlinear scale interactions associated with relative vorticity advection are evaluated using cross-spectral analysis in the frequency–wavenumber domain from sea level anomaly (SLA) time series. This analysis is applied within four eddy-active midlatitude regions having large intrinsic variability spread over a wide range of scales. Over these four regions, mesoscale surface KE is shown to spontaneously cascade toward larger spatial scales—between the deformation scale and the Rhines scale—and longer time scales (possibly exceeding 10 years). Other nonlinear processes might have to be invoked to explain the longer time scales of intrinsic variability, which have a substantial surface imprint at midlatitudes. The analysis of a fully forced 1/12° hindcast shows that low-frequency and synoptic atmospheric forcing barely affects this inverse KE cascade. The inverse cascade is also at work in a 1/4° simulation, albeit with a weaker intensity, consistent with the weaker intrinsic variability found at this coarser resolution. In the midlatitude North Pacific, the spatiotemporal cascade transfers KE from high-frequency frontal Rossby waves (FRWs), probably generated by baroclinic instability, toward the lower-frequency, westward-propagating mesoscale eddy (WME) field. The WMEs provide local gradients of potential vorticity that support these short Doppler-shifted FRWs. FRWs have periods shorter than 2 months and might be subsampled by altimetric observations, perhaps explaining why the temporal inverse cascade deduced from high-resolution models and mapped altimeter products can be quite different. The nature of the nonlinear interactions between FRWs and WMEs remains unclear but might involve wave turbulence processes.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2018
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages