Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Experimental & Clinical Cancer Research, Springer Science and Business Media LLC, Vol. 40, No. 1 ( 2021-12)
    Abstract: SAMHD1 mediates resistance to anti-cancer nucleoside analogues, including cytarabine, decitabine, and nelarabine that are commonly used for the treatment of leukaemia, through cleavage of their triphosphorylated forms. Hence, SAMHD1 inhibitors are promising candidates for the sensitisation of leukaemia cells to nucleoside analogue-based therapy. Here, we investigated the effects of the cytosine analogue CNDAC, which has been proposed to be a SAMHD1 inhibitor, in the context of SAMHD1. Methods CNDAC was tested in 13 acute myeloid leukaemia (AML) cell lines, in 26 acute lymphoblastic leukaemia (ALL) cell lines, ten AML sublines adapted to various antileukaemic drugs, 24 single cell-derived clonal AML sublines, and primary leukaemic blasts from 24 AML patients. Moreover, 24 CNDAC-resistant sublines of the AML cell lines HL-60 and PL-21 were established. The SAMHD1 gene was disrupted using CRISPR/Cas9 and SAMHD1 depleted using RNAi, and the viral Vpx protein. Forced DCK expression was achieved by lentiviral transduction. SAMHD1 promoter methylation was determined by PCR after treatment of genomic DNA with the methylation-sensitive HpaII endonuclease. Nucleoside (analogue) triphosphate levels were determined by LC-MS/MS. CNDAC interaction with SAMHD1 was analysed by an enzymatic assay and by crystallisation. Results Although the cytosine analogue CNDAC was anticipated to inhibit SAMHD1, SAMHD1 mediated intrinsic CNDAC resistance in leukaemia cells. Accordingly, SAMHD1 depletion increased CNDAC triphosphate (CNDAC-TP) levels and CNDAC toxicity. Enzymatic assays and crystallisation studies confirmed CNDAC-TP to be a SAMHD1 substrate. In 24 CNDAC-adapted acute myeloid leukaemia (AML) sublines, resistance was driven by DCK (catalyses initial nucleoside phosphorylation) loss. CNDAC-adapted sublines displayed cross-resistance only to other DCK substrates (e.g. cytarabine, decitabine). Cell lines adapted to drugs not affected by DCK or SAMHD1 remained CNDAC sensitive. In cytarabine-adapted AML cells, increased SAMHD1 and reduced DCK levels contributed to cytarabine and CNDAC resistance. Conclusion Intrinsic and acquired resistance to CNDAC and related nucleoside analogues are driven by different mechanisms. The lack of cross-resistance between SAMHD1/ DCK substrates and non-substrates provides scope for next-line therapies after treatment failure.
    Type of Medium: Online Resource
    ISSN: 1756-9966
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2430698-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancers, MDPI AG, Vol. 13, No. 21 ( 2021-10-26), p. 5373-
    Abstract: Human hepatocellular carcinoma (HCC) is among the most lethal and common cancers in the human population, and new molecular targets for therapeutic intervention are urgently needed. Deleted in liver cancer 1 (DLC1) was originally identified as a tumor suppressor gene in human HCC. DLC1 is a Rho-GTPase-activating protein (RhoGAP) which accelerates the return of RhoGTPases to an inactive state. We recently described that the restoration of DLC1 expression induces cellular senescence. However, this principle is not amenable to direct therapeutic targeting. We therefore performed gene expression profiling for HepG2 cells depleted of DLC1 to identify druggable gene targets mediating the effects of DLC1 on senescence induction. This approach revealed that versican (VCAN), tetraspanin 5 (TSPAN5) and N-cadherin (CDH2) were strongly upregulated upon DLC1 depletion in HCC cells, but only TSPAN5 affected the proliferation of HCC cells and human HCC. The depletion of TSPAN5 induced oncogene-induced senescence (OIS), mediated by the p16INK4a/pRb pathways. Mechanistically, silencing TSPAN5 reduced actin polymerization and thereby myocardin-related transcription factor A- filamin A (MRTF-A-FLNA) complex formation, resulting in decreased expression of MRTF/SRF-dependent target genes and senescence induction in vitro and in vivo. Our results identify TSPAN5 as a novel druggable target for HCC.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527080-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Global Ecology and Biogeography, Wiley, Vol. 30, No. 8 ( 2021-08), p. 1583-1596
    Abstract: Distribution ranges of temperate tree species are shifting poleward and upslope into cooler environments due to global warming. Successful regeneration is crucial for population persistence and range expansion. Thus, we aimed to identify environmental variables that affect germination and seedling establishment of Europe's dominant forest tree, to compare the importance of plasticity and genetic variation for regeneration, and to evaluate the regeneration potential at and beyond the southern and northern distribution margins. Location Europe. Time period 2016–2018. Major taxa studied European beech ( Fagus sylvatica (L.)). Methods We investigated how germination, establishment and juvenile survival change across a reciprocal transplantation experiment using over 9,000 seeds of beech from 7 populations from its southern to its northern distribution range margins. Results Germination and establishment at the seedling stage were highly plastic in response to environmental conditions. Germination success increased with warmer and declined with colder air temperature, whereas establishment and survival were hampered under warmer and drier conditions. Germination differed among populations and was positively influenced by seed weight. However, there was no evidence of local adaptation in any trait. Main conclusions The high plasticity in the early life‐history traits found irrespective of seed origin may allow for short‐term acclimatization. However, our results also indicate that this plasticity might not be sufficient to ensure the regeneration of beech in the future due to the low survival found under dry and hot conditions. The future climatic conditions in parts of the distribution centre and at the rear edge might thus become limiting for natural regeneration, as the likelihood of extreme heat and drought events will increase. By contrast, at the cold distribution margin, the high plasticity in the early life‐history traits may allow for increasing germination success with increasing temperatures and may thus facilitate natural regeneration in the future.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages