feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Drug and Chemical Toxicology, Informa UK Limited, Vol. 46, No. 5 ( 2023-09-03), p. 1044-1050
    Type of Medium: Online Resource
    ISSN: 0148-0545 , 1525-6014
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2023
    detail.hit.zdb_id: 2028063-4
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Theranostics, Ivyspring International Publisher, Vol. 10, No. 9 ( 2020), p. 4233-4249
    Type of Medium: Online Resource
    ISSN: 1838-7640
    Language: English
    Publisher: Ivyspring International Publisher
    Publication Date: 2020
    detail.hit.zdb_id: 2592097-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Biomedical Science, Springer Science and Business Media LLC, Vol. 28, No. 1 ( 2021-12)
    Abstract: Obesity-related cardiovascular risk, end points, and mortality are strongly related to arterial stiffening. Current therapeutic approaches for arterial stiffening are not focused on direct targeting within the vessel. Perivascular adipose tissue (PVAT) surrounding the artery has been shown to modulate vascular function and inflammation. Peroxisome proliferator-activated receptor γ (PPARγ) activation significantly decreases arterial stiffness and inflammation in diabetic patients with coronary artery disease. Thus, we hypothesized that PPARγ activation alters the PVAT microenvironment, thereby creating a favorable environment for the attenuation of arterial stiffening in obesity. Methods Obese ob/ob mice were used to investigate the effect of PPARγ activation on the attenuation of arterial stiffening. Various cell types, including macrophages, fibroblasts, adipocytes, and vascular smooth muscle cells, were used to test the inhibitory effect of pioglitazone, a PPARγ agonist, on the expression of elastolytic enzymes. Results PPARγ activation by pioglitazone effectively attenuated arterial stiffening in ob/ob mice. This beneficial effect was not associated with the repartitioning of fat from or changes in the browning of the PVAT depot but was strongly related to improvement of the PVAT microenvironment, as evidenced by reduction in the expression of pro-inflammatory and pro-oxidative factors. Pioglitazone treatment attenuated obesity-induced elastin fiber fragmentation and elastolytic activity and ameliorated the obesity-induced upregulation of cathepsin S and metalloproteinase 12, predominantly in the PVAT. In vitro, pioglitazone downregulated Ctss and Mmp12 in macrophages, fibroblasts, and adipocytes—cell types residing within the adventitia and PVAT. Ultimately, several PPARγ binding sites were found in Ctss and Mmp12 in Raw 264.7 and 3T3-L1 cells, suggesting a direct regulatory mechanism by which PPARγ activation repressed the expression of Ctss and Mmp-12 in macrophages and fibroblasts. Conclusions PPARγ activation attenuated obesity-induced arterial stiffening and reduced the inflammatory and oxidative status of PVAT. The improvement of the PVAT microenvironment further contributed to the amelioration of elastin fiber fragmentation, elastolytic activity, and upregulated expression of Ctss and Mmp12 . Our data highlight the PVAT microenvironment as an important target against arterial stiffening in obesity and provide a novel strategy for the potential clinical use of PPARγ agonists as a therapeutic against arterial stiffness through modulation of PVAT function.
    Type of Medium: Online Resource
    ISSN: 1423-0127
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1482918-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Immunology Vol. 13 ( 2022-7-1)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-7-1)
    Abstract: Ischemic stroke is caused by a sudden reduction in cerebral blood flow that subsequently induces a complex cascade of pathophysiological responses, leading to brain inflammation and irreversible infarction. 4-ethylguaiacol (4-EG) is reported to suppress inflammatory immune responses. However, whether 4-EG exerts anti-inflammatory effects in ischemic stroke remains unexplored. We evaluated the therapeutic potential of 4-EG and examined the cellular and molecular mechanisms underlying the protective effects of 4-EG in ischemic stroke. The effect of 4-EG in ischemic stroke was determined by using a transient middle cerebral artery occlusion (MCAO) animal model followed by exploring the infarct size, neurological deficits, microglia activation, inflammatory cytokine production, blood–brain barrier (BBB) disruption, brain endothelial cell adhesion molecule expression, and microglial heme oxygenase-1 (HO-1) expression. Nrf2 -/- and HO-1 inhibitor ZnPP-treated mice were also subjected to MCAO to evaluate the role of the Nrf2/HO-1 pathway in 4-EG-mediated protection in ischemic stroke. We found that 4-EG attenuated infarct size and neurological deficits, and lessened BBB disruption in ischemic stroke. Further investigation revealed that 4-EG suppressed microglial activation, peripheral inflammatory immune cell infiltration, and brain endothelial cell adhesion molecule upregulation in the ischemic brain. Finally, we identified that the protective effect of 4-EG in ischemic stroke was abolished in Nrf2 -/– and ZnPP-treated MCAO mice. Our results identified that 4-EG confers protection against ischemic stroke and reveal that the protective effect of 4-EG in ischemic stroke is mediated through the induction of the Nrf2/HO1 pathway. Thus, our findings suggest that 4-EG could be developed as a novel therapeutic agent for the treatment of ischemic stroke.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Immunology Vol. 14 ( 2023-3-31)
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 14 ( 2023-3-31)
    Abstract: Tissue plasminogen activator (tPA) is the only FDA-approved drug for the treatment of ischemic stroke. Delayed tPA administration is associated with increased risks of blood-brain barrier (BBB) disruption and hemorrhagic transformation. Studies have shown that interferon beta (IFNβ) or type I IFN receptor (IFNAR1) signaling confers protection against ischemic stroke in preclinical models. In addition, we have previously demonstrated that IFNβ can be co-administered with tPA to alleviate delayed tPA-induced adverse effects in ischemic stroke. In this study, we investigated the time limit of IFNβ treatment on the extension of tPA therapeutic window and assessed the effect of IFNβ on modulating microglia (MG) phenotypes in ischemic stroke with delayed tPA treatment. Mice were subjected to 40 minutes transient middle cerebral artery occlusion (MCAO) followed by delayed tPA treatment in the presence or absence of IFNβ at 3h, 4.5h or 6h post-reperfusion. In addition, mice with MG-specific IFNAR1 knockdown were generated to validate the effects of IFNβ on modulating MG phenotypes, ameliorating brain injury, and lessening BBB disruption in delayed tPA-treated MCAO mice. Our results showed that IFNβ extended tPA therapeutic window to 4.5h post-reperfusion in MCAO mice, and that was accompanied with attenuated brain injury and lessened BBB disruption. Mechanistically, our findings revealed that IFNβ modulated MG polarization, leading to the suppression of inflammatory MG and the promotion of anti-inflammatory MG, in delayed tPA-treated MCAO mice. Notably, these effects were abolished in MG-specific IFNAR1 knockdown MCAO mice. Furthermore, the protective effect of IFNβ on the amelioration of delayed tPA-exacerbated ischemic brain injury was also abolished in these mice. Finally, we identified that IFNβ-mediated modulation of MG phenotypes played a role in maintaining BBB integrity, because the knockdown of IFNAR1 in MG partly reversed the protective effect of IFNβ on lessening BBB disruption in delayed tPA-treated MCAO mice. In summary, our study reveals a novel function of IFNβ in modulating MG phenotypes, and that may subsequently confer protection against delayed tPA-exacerbated brain injury in ischemic stroke.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2606827-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Brain Communications Vol. 3, No. 3 ( 2021-07-01)
    In: Brain Communications, Oxford University Press (OUP), Vol. 3, No. 3 ( 2021-07-01)
    Abstract: Inflammatory stimuli induce immunoresponsive gene 1 expression that in turn catalyses the production of itaconate through diverting cis-aconitate away from the tricarboxylic acid cycle. The immunoregulatory effect of the immunoresponsive gene 1/itaconate axis has been recently documented in lipopolysaccharide-activated mouse and human macrophages. In addition, dimethyl itaconate, an itaconate derivative, was reported to ameliorate disease severity in the animal models of psoriasis and multiple sclerosis. Currently, whether immunoresponsive gene 1/itaconate axis exerts a modulatory effect in ischaemic stroke remains unexplored. In this study, we investigated whether immunoresponsive gene 1 plays a role in modulating ischaemic brain injury. In addition, the molecular mechanism underlying the protective effects of immunoresponsive gene 1 in ischaemic stroke was elucidated. Our results showed that immunoresponsive gene 1 was highly induced in the ischaemic brain following ischaemic injury. Interestingly, we found that IRG1−/− stroke animals exhibited exacerbated brain injury, displayed with enlarged cerebral infarct, compared to wild-type stroke controls. Furthermore, IRG1−/− stroke animals presented aggravated blood–brain barrier disruption, associated with augmented Evans blue leakage and increased immune cell infiltrates in the ischaemic brain. Moreover, IRG1−/− stroke animals displayed elevated microglia activation, demonstrated with increased CD68, CD86 and Iba1 expression. Further analysis revealed that immunoresponsive gene 1 was induced in microglia after ischaemic stroke, and deficiency in immunoresponsive gene 1 resulted in repressed microglial heme oxygenase-1 expression and exacerbated ischaemic brain injury. Notably, the administration of dimethyl itaconate to compensate for the deficiency of immunoresponsive gene 1/itaconate axis led to enhanced microglial heme oxygenase-1 expression, alleviated ischaemic brain injury, improved motor function and decreased mortality in IRG1−/− stroke animals. In summary, we demonstrate for the first time that the induction of immunoresponsive gene 1 in microglia following ischaemic stroke serves as an endogenous protective mechanism to restrain brain injury through heme oxygenase-1 up-regulation. Thus, our findings suggest that targeting immunoresponsive gene 1 may represent a novel therapeutic approach for the treatment of ischaemic stroke.
    Type of Medium: Online Resource
    ISSN: 2632-1297
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 3020013-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Biomedicine & Pharmacotherapy, Elsevier BV, Vol. 163 ( 2023-07), p. 114752-
    Type of Medium: Online Resource
    ISSN: 0753-3322
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1501510-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2020
    In:  The Journal of Immunology Vol. 204, No. 1_Supplement ( 2020-05-01), p. 160.9-160.9
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 204, No. 1_Supplement ( 2020-05-01), p. 160.9-160.9
    Abstract: Itaconate has recently emerged as a regulator of immune cell function. Studies show that itaconate is required for the activation of anti-inflammatory transcription factor Nrf2 by LPS in macrophages. Moreover, dimethyl itaconate (DMI), an itaconate derivative, has been shown to inhibit IL-17-induced IκBζ activation in keratinocytes and modulate IL-17-IκBζ pathway-mediated skin inflammation in an animal model of psoriasis. Currently, the effect of itaconate on regulating macrophage functions and peripheral inflammatory immune responses is well established. However, its effect on microglia (MG) and CNS inflammatory immune responses remains unexplored. Thus, in this study we investigated whether itaconate possesses an immunomodulatory effect on regulating MG activation and CNS inflammation in experimental autoimmune encephalomyelitis (EAE). Chronic C57BL/6 EAE and relapsing-remitting SJL/J EAE were induced to assess the therapeutic effect of DMI. Our results show DMI ameliorated disease severity in the chronic C57BL/6 EAE model. Further analysis of the cellular and molecular mechanisms revealed that DMI mitigated blood-brain barrier disruption, inhibited MMP3 and MMP9 production, suppressed microglia activation, and repressed CNS infiltration of Th1 and Th17 cells. Strikingly, DMI also exhibited a therapeutic effect on lessening severity of relapse in the relapsing-remitting SJL/J EAE model. In conclusion, we demonstrate for the first time that DMI suppressed neuroinflammation and ameliorated disease severity in EAE through multiple cellular and molecular mechanisms, and our findings suggest that DMI can be developed as a novel therapeutic agent for the treatment of EAE through its anti-inflammatory properties.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2020
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2022
    In:  The Journal of Immunology Vol. 208, No. 1_Supplement ( 2022-05-01), p. 111.02-111.02
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 208, No. 1_Supplement ( 2022-05-01), p. 111.02-111.02
    Abstract: Inflammatory stimuli induce immunoresponsive gene 1 (IRG1) expression that in turn catalyzes the production of itaconate through diverting cis-aconitate away from the tricarboxylic acid cycle. The immunoregulatory effect of IRG1/itaconate axis has been recently documented in lipopolysaccharide-activated mouse and human macrophages. Currently, whether IRG1/itaconate axis exerts a modulatory effect in ischemic stroke remains unexplored. In this study, we investigated whether IRG1 plays a role in modulating ischemic brain injury. Our results showed IRG1 was highly induced in the ischemic brain following ischemic injury. We found that IRG1−/− stroke animals exhibited exacerbated brain injury, displayed with enlarged cerebral infarct, compared to wild type stroke controls. Furthermore, IRG1−/− stroke animals presented aggravated blood-brain barrier disruption, associated with augmented Evans blue leakage of the ischemic brain. Moreover, IRG1−/− stroke animals displayed elevated microglia activation, demonstrated with increased CD68, CD86, and Iba1 expression. Further analysis revealed that IRG1 was induced in microglia after ischemic stroke, and deficiency in IRG1 resulted in repressed microglial heme oxygenase-1 (HO-1) expression. Notably, the administration of dimethyl itaconate, an itaconate derivative, to compensate the deficiency of IRG1/itaconate axis led to enhanced microglial HO-1 expression, alleviated ischemic brain injury, improved motor function, and decreased mortality rate in IRG1−/− stroke animals. In summary, we demonstrate that the induction of IRG1 in microglia following ischemic stroke may serve as a protective mechanism to restrain brain injury through HO-1 upregulation. This work was supported by Indiana University Startup Fund and in part by the National Institutes of Health (R01NS102449) to J.-H.Y.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2022
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Neuroinflammation, Springer Science and Business Media LLC, Vol. 17, No. 1 ( 2020-12)
    Abstract: Inflammatory stimuli induce immunoresponsive gene 1 (IRG1) expression that in turn catalyzes the production of itaconate from the tricarboxylic acid cycle. Itaconate has recently emerged as a regulator of immune cell functions, especially in macrophages. Studies show that itaconate is required for the activation of anti-inflammatory transcription factor Nrf2 by LPS in mouse and human macrophages, and LPS-activated IRG1 -/- macrophages that lack endogenous itaconate production exhibit augmented inflammatory responses. Moreover, dimethyl itaconate (DMI), an itaconate derivative, inhibits IL-17-induced IκBς activation in keratinocytes and modulates IL-17-IκBς pathway-mediated skin inflammation in an animal model of psoriasis. Currently, the effect of itaconate on regulating macrophage functions and peripheral inflammatory immune responses is well established. However, its effect on microglia (MG) and CNS inflammatory immune responses remains unexplored. Thus, we investigated whether itaconate possesses an immunomodulatory effect on regulating MG activation and CNS inflammation in animal models of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Methods Chronic C57BL/6 EAE was induced followed by DMI treatment. The effect of DMI on disease severity, blood-brain barrier (BBB) disruption, MG activation, peripheral Th1/Th17 differentiation, and the CNS infiltration of Th1/Th17 cells in EAE was determined. Primary MG was cultured to study the effect of DMI on MG activation. Relapsing-remitting SJL/J EAE was induced to assess the therapeutic effect of DMI. Results Our results show DMI ameliorated disease severity in the chronic C57BL/6 EAE model. Further analysis of the cellular and molecular mechanisms revealed that DMI mitigated BBB disruption, inhibited MMP3/MMP9 production, suppressed microglia activation, inhibited peripheral Th1/Th17 differentiation, and repressed the CNS infiltration of Th1 and Th17 cells. Strikingly, DMI also exhibited a therapeutic effect on alleviating severity of relapse in the relapsing-remitting SJL/J EAE model. Conclusions We demonstrate that DMI suppresses neuroinflammation and ameliorates disease severity in EAE through multiple cellular and molecular mechanisms, suggesting that DMI can be developed as a novel therapeutic agent for the treatment of MS/EAE through its immunomodulatory and anti-inflammatory properties.
    Type of Medium: Online Resource
    ISSN: 1742-2094
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2156455-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages