Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Ecology and Evolution Vol. 10 ( 2022-5-23)
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 10 ( 2022-5-23)
    Abstract: Understanding and predicting biodiversity responses to climate change are vital to inform conservation strategies, but this is not straightforward as climate change responses depend on the landscape context and differ among species. Here, we quantified changes in the distribution and abundance of 30 butterfly species in the Netherlands in relation to climate change and in landscapes that vary in the amount and connectivity of (semi-)natural vegetation (SNV). We obtained yearly counts of well-monitored butterfly species from 327 time series over 27 years (1992–2018). We used these counts to build mixed effect hurdle models to relate species’ occurrence and abundance to temperature and the amount and connectivity of SNV around the sites. For 55% of the butterfly species, an increased amount or connectivity of SNV corresponded with stronger increases or reduced decreases in occurrence in response to warming, indicating that SNV may facilitate range expansion or mitigate extirpations due to climate change. However, for the occurrence of the other species we found no or a negative interaction between warming and SNV. Further, we did not find indications of a mitigating effect of SNV on abundance responses to warming. Our results thus suggest that increasing the amount and connectivity of SNV does not offer a “one-size-fits-all” solution, highlighting the need for additional measures if butterfly diversity is to be conserved.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2745634-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 2 ( 2021-01-12)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 2 ( 2021-01-12)
    Abstract: We review changes in the status of butterflies in Europe, focusing on long-running population data available for the United Kingdom, the Netherlands, and Belgium, based on standardized monitoring transects. In the United Kingdom, 8% of resident species have become extinct, and since 1976 overall numbers declined by around 50%. In the Netherlands, 20% of species have become extinct, and since 1990 overall numbers in the country declined by 50%. Distribution trends showed that butterfly distributions began decreasing long ago, and between 1890 and 1940, distributions declined by 80%. In Flanders (Belgium), 20 butterflies have become extinct (29%), and between 1992 and 2007 overall numbers declined by around 30%. A European Grassland Butterfly Indicator from 16 European countries shows there has been a 39% decline of grassland butterflies since 1990. The 2010 Red List of European butterflies listed 38 of the 482 European species (8%) as threatened and 44 species (10%) as near threatened (note that 47 species were not assessed). A country level analysis indicates that the average Red List rating is highest in central and mid-Western Europe and lowest in the far north of Europe and around the Mediterranean. The causes of the decline of butterflies are thought to be similar in most countries, mainly habitat loss and degradation and chemical pollution. Climate change is allowing many species to spread northward while bringing new threats to susceptible species. We describe examples of possible conservation solutions and a summary of policy changes needed to conserve butterflies and other insects.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Ecology Letters, Wiley, Vol. 24, No. 5 ( 2021-05), p. 950-957
    Abstract: Habitat fragmentation may present a major impediment to species range shifts caused by climate change, but how it affects local community dynamics in a changing climate has so far not been adequately investigated empirically. Using long‐term monitoring data of butterfly assemblages, we tested the effects of the amount and distribution of semi‐natural habitat (SNH), moderated by species traits, on climate‐driven species turnover. We found that spatially dispersed SNH favoured the colonisation of warm‐adapted and mobile species. In contrast, extinction risk of cold‐adapted species increased in dispersed (as opposed to aggregated) habitats and when the amount of SNH was low. Strengthening habitat networks by maintaining or creating stepping‐stone patches could thus allow warm‐adapted species to expand their range, while increasing the area of natural habitat and its spatial cohesion may be important to aid the local persistence of species threatened by a warming climate.
    Type of Medium: Online Resource
    ISSN: 1461-023X , 1461-0248
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020195-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages